Volume 11, Issue 1 (6-2024)                   nbr 2024, 11(1): 62-86 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alimoradi A, SalarAmoli J, Daneshmand M, Armand R. Comparative investigation of biological properties of extract and silver oxide nanoparticles synthesized from aqueous extract of calyx of eggplant. nbr 2024; 11 (1) : 5
URL: http://nbr.khu.ac.ir/article-1-3672-en.html
University of Tehran , jsalar@ut.ac.ir
Abstract:   (2070 Views)
Calyx of eggplant is recognized as agricultural byproducts containing significant levels of phenolic, flavonoid, and anthocyanin compounds that facilitate the reduction of silver ions, enabling the eco-friendly production of silver oxide nanoparticles through a green synthesis approach. The utilization of silver oxide nanoparticles has garnered considerable interest in various industries due to their versatile applications and environmentally sustainable nature. Various analytical techniques such as ultraviolet- visible spectrophotometry, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and dynamic light scattering were employed to confirm the formation of silver oxide nanoparticles and characterize their properties. The antioxidant, antibacterial, and antifungal activities of the silver oxide nanoparticles and the aqueous extract of calyx of eggplant were evaluated through assays including 1,1-diphenyl-2-picrylhydrazyl radical scavenging, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical inhibition, disc diffusion, minimum inhibitory concentration and minimum bactericidal concentration. The absorption peak at 422 nm confirmed the presence of silver oxide nanoparticles, with a particle size of approximately 140 nm determined by DLS analysis and a spherical shape observed through SEM imaging. The biological activities of the silver oxide nanoparticles, including their antioxidant properties and antimicrobial effects were found to be superior to those of the aqueous calyx of eggplant extract.
 
Article number: 5
Full-Text [PDF 1235 kb]   (392 Downloads)    
Type of Study: Original Article | Subject: Biotechnology
Received: 2024/03/28 | Revised: 2024/12/4 | Accepted: 2024/06/9 | Published: 2024/06/22 | ePublished: 2024/06/22

References
1. Aboyewa, J. A., Sibuyi, N. R., Meyer, M., &Oguntibeju, O. O. (2021). Green synthesis of metallic nanoparticles using some selected medicinal plants from southern africa and their biological applications. Plants, 10(9), 1929 [DOI:10.3390/plants10091929]
2. Alvand, Z. M., Rajabi, H. R., Mirzaei, A., &Masoumiasl, A. (2019). Ultrasonic and microwave assisted extraction as rapid and efficient techniques for plant mediated synthesis of quantum dots: green synthesis, characterization of zinc telluride and comparison study of some biological activities. New Journal of Chemistry, 43(38), 15126-15138. [DOI:10.1039/C9NJ03144H]
3. Alvand, Z.M., Rajabi, H. R., Mirzaei, A., Masoumiasl, A., & Sadatfaraji, H. (2019). Rapid and green synthesis of cadmium telluride quantum dots with low toxicity based on a plant-mediated approach after microwave and ultrasonic assisted extraction: synthesis, characterization, biological potentials and comparison study. Materials Science and Engineering: C, 98, 535-544. https://doi.org/10.1016/j.msec.2019.01.010 [DOI:10.1016/j.msec.2019.01.010.]
4. Alzubaidi, A. K., Al-Kaabi, W. J., Ali, A. A., Albukhaty, S., Al-Karagoly, H., Sulaiman, G. M., ... & Khane, Y. (2023). Green synthesis and characterization of silver nanoparticles using flaxseed extract and evaluation of their antibacterial and antioxidant activities. Applied Sciences, 13(4), 2182. [DOI:10.3390/app13042182]
5. Azizi, S., Mohamad, R., Rahim, R. A., Moghaddam, A. B., Moniri, M., Ariff, A., Zuhainis Saad, W., Namvab, F. (2016). ZnO-Ag core shell nanocomposite formed by green method using essential oil of wild ginger and their bactericidal and cytotoxic effects. Applied Surface Science, 384, 517-524. [DOI:10.1016/j.apsusc.2016.05.052]
6. Barabadi, H., Mojab, F., Vahidi, H., Marashi, B., Talank, N., Hosseini, O., & Saravanan, M. (2021). Green synthesis, characterization, antibacterial and biofilm inhibitory activity of silver nanoparticles compared to commercial silver nanoparticles. Inorganic Chemistry Communications, 129, 108647. [DOI:10.1016/j.inoche.2021.108647]
7. Cunha, F. A., Maia, K. R., Mallman, E. J., Cunha, M. D., Maciel, A. A., Souza, I. P., Menezes, E. A., &Fechine, P. B. (2016). SILVER NANOPARTICLES-DISK DIFFUSION TEST AGAINST Escherichia coli ISOLATES. Revista do Instituto de Medicina Tropical de Sao Paulo, 58, 73. [DOI:10.1590/S1678-9946201658073]
8. Fayyadh, A. A., Jaduaa Alzubaidy, M. H. (2021). Green-synthesis of Ag2O nanoparticle for antimicrobial assays. Journal of the Mechanical Behavior of Materials, 30(1), 228-236. [DOI:10.1515/jmbm-2021-0024]
9. Harish, B. S., Uppuluri, K. B., & Anbazhagan, V. (2015). Synthesis of fibrinolytic active silver nanoparticle using wheat bran xylan as a reducing and stabilizing agent. Carbohydrate polymers, 132, 104-110. [DOI:10.1016/j.carbpol.2015.06.069]
10. Huq, M. A., Ashrafudoulla, M., Rahman, M. M., Balusamy, S. R., & Akter, S. (2022). Green synthesis and potential antibacterial applications of bioactive silver nanoparticles: A review. Polymers, 14(4), 742. [DOI:10.3390/polym14040742]
11. Intan Soraya, C. S., Mahiran Basri, M. B., Hamid Reza, F. M., Chee WeiJian, C. W., SitiEflizaAshari, S. E. A., &Maznah Ismail, M. I. (2017). Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthusnutans Lindau leaves by response surface methodology. [DOI:10.1186/s13065-017-0285-1]
12. Jabir, M. S., Hussien, A. A., Sulaiman, G. M., Yaseen, N. Y., Dewir, Y. H., Alwahibi, M. S., ... & Rizwana, H. (2021). Green synthesis of silver nanoparticles from Eriobotrya japonica extract: a promising approach against cancer cells proliferation, inflammation, allergic disorders and phagocytosis induction. Artificial cells, nanomedicine, and biotechnology, 49(1), 48-60. [DOI:10.1080/21691401.2020.1867152]
13. Jenifer, A. A., Malaikozhundan, B., Vijayakumar, S., Anjugam, M., Iswarya, A., & Vaseeharan, B. (2020). Green synthesis and characterization of silver nanoparticles (AgNPs) using leaf extract of Solanum nigrum and assessment of toxicity in vertebrate and invertebrate aquatic animals. Journal of Cluster Science, 31, 989-1002. [DOI:10.1007/s10876-019-01704-7]
14. Khalil, M. M., Ismail, E. H., El-Baghdady, K. Z., & Mohamed, D. (2014). Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian Journal of chemistry, 7(6), 1131-1139. [DOI:10.1016/j.arabjc.2013.04.007]
15. Khan, M., Khan, A. U., Moon, I. S., Felimban, R., Alserihi, R., Alsanie, W. F., & Alam, M. (2021). Synthesis of biogenic silver nanoparticles from the seed coat waste of pistachio (Pistacia vera) and their effect on the growth of eggplant. Nanotechnology Reviews, 10(1), 1789-1800. [DOI:10.1515/ntrev-2021-0107]
16. Kim, K. J., Sung, W. S., Suh, B. K., Moon, S. K., Choi, J. S., Kim, J. G., & Lee, D. G. (2009). Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals, 22, 235-242. [DOI:10.1007/s10534-008-9159-2]
17. Krishnan, R., Arumugam, V., &Vasaviah, S. K. (2015). The MIC and MBC of silver nanoparticles against Enterococcus faecalis-a facultative anaerobe. J NanomedNanotechnol, 6(3), 285.http://dx.doi.org/10.4172/2157-7439.1000285 [DOI:10.4172/2157-7439.1000285]
18. Krithiga, N., Rajalakshmi, A., & Jayachitra, A. (2015). Green synthesis of silver nanoparticles using leaf extracts of Clitoriaternatea and Solanum nigrum and study of its antibacterial effect against common nosocomial pathogens. Journal of Nanoscience, 2015, 1- [DOI:10.1155/2015/928204]
19. Labulo, A. H., David, O. A., & Terna, A. D. (2022). Green synthesis and characterization of silver nanoparticles using Morindalucida leaf extract and evaluation of its antioxidant and antimicrobial activity. Chemical Papers, 76(12), 7313-7325. [DOI:10.1007/s11696-022-02392-w]
20. Lateef, A., Ojo, S. A., Folarin, B. I., Gueguim-Kana, E. B., & Beukes, L. S. (2016). Kolanut (Cola nitida) mediated synthesis of silver-gold alloy nanoparticles: antifungal, catalytic, larvicidal and thrombolytic applications. Journal of Cluster Science, 27, 1561-1577. [DOI:10.1007/s10876-016-1019-6]
21. Nagaraja, S., Ahmed, S. S., DR, B., Goudanavar, P., Fattepur, S., Meravanige, G., ... &Telsang, M. (2022). Green synthesis and characterization of silver nanoparticles of Psidium guajava leaf extract and evaluation for its antidiabetic activity. Molecules, 27(14), 4336. [DOI:10.3390/molecules27144336]
22. Narayanan, M., Divya, S., Natarajan, D., Senthil-Nathan, S., Kandasamy, S., Chinnathambi, A., ... & Pugazhendhi, A. (2021). Green synthesis of silver nanoparticles from aqueous extract of Ctenolepisgarcini L. and assess their possible biological applications. Process Biochemistry, 107, 91-99. [DOI:10.1016/j.procbio.2021.05.008]
23. Naveed, M., Bukhari, B., Aziz, T., Zaib, S., Mansoor, M. A., Khan, A. A., ... &Alhomrani, M. (2022). Green synthesis of silver nanoparticles using the plant extract of Acer oblongifolium and study of its antibacterial and antiproliferative activity via mathematical approaches. Molecules, 27(13), 4226. [DOI:10.3390/molecules27134226]
24. Nouri, A., Yaraki, M. T., Lajevardi, A., Rezaei, Z., Ghorbanpour, M., & Tanzifi, M. (2020). Ultrasonic-assisted green synthesis of silver nanoparticles using Mentha aquatica leaf extract for enhanced antibacterial properties and catalytic activity. Colloid and Interface Science Communications, 35, 100252 [DOI:10.1016/j.colcom.2020.100252]
25. Oladipo, I. C., &Ogunsona, S. B. 2019, The Utilization of Agro-Waste: A Nanobiotechnology.pp1-23
26. Oves, M., Rauf, M. A., Aslam, M., Qari, H. A., Sonbol, H., Ahmad, I., ... & Saeed, M. (2022). Green synthesis of silver nanoparticles by ConocarpusLancifolius plant extract and their antimicrobial and anticancer activities. Saudi journal of biological sciences, 29(1), 460-471. [DOI:10.1016/j.sjbs.2021.09.007]
27. Patra, S., Mukherjee, S., Barui, A. K., Ganguly, A., Sreedhar, B., & Patra, C. R. (2015). Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Materials Science and Engineering: C, 53, 298-309. [DOI:10.1016/j.msec.2015.04.048]
28. Pushparaj, K., Balasubramanian, B., Kandasamy, Y., Arumugam, V. A., Kaliannan, D., Arumugam, M., ... &Meyyazhagan, A. (2023). Green synthesis, characterization of silver nanoparticles using aqueous leaf extracts of Solanum melongena and in vitro evaluation of antibacterial, pesticidal and anticancer activity in human MDA-MB-231 breast cancer cell lines. Journal of King Saud University-Science, 35(5), 102663. [DOI:10.1016/j.jksus.2023.102663]
29. Roopan, S. M., Madhumitha, G., Rahuman, A. A., Kamaraj, C., Bharathi, A., & Surendra, T. V. (2013). Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Industrial Crops and Products, 43, 631-635. [DOI:10.1016/j.indcrop.2012.08.013]
30. Saratale, G. D., Saratale, R. G., Kim, D. S., Kim, D. Y., & Shin, H. S. (2020). Exploiting fruit waste grape pomace for silver nanoparticles synthesis, assessing their antioxidant, antidiabetic potential and antibacterial activity against human pathogens: a novel approach. Nanomaterials, 10(8), 1457. [DOI:10.3390/nano10081457]
31. Shaaban, M. T., Mohamed, B. S., Zayed, M., & El-Sabbagh, S. M. (2024). Antibacterial, antibiofilm, and anticancer activity of silver-nanoparticles synthesized from the cell-filtrate of Streptomyces enissocaesilis. BMC biotechnology, 24(1), 1-13. [DOI:10.1186/s12896-024-00833-w]
32. Sharma, K., Kaushik, S., & Jyoti, A. (2016). Green synthesis of silver nanoparticles by using waste vegetable peel and its antibacterial activities. Journal of Pharmaceutical Sciences and Research, 8(5), 313.
33. Shnoudeh, A. J., Hamad, I., Abdo, R. W., Qadumii, L., Jaber, A. Y., Surchi, H. S., &Alkelany, S. Z. (2019). Synthesis, characterization, and applications of metal nanoparticles. In Biomaterials and bionanotechnology (pp. 527-612). Academic Press.) [DOI:10.1016/B978-0-12-814427-5.00015-9]
34. Singhal, G., Bhavesh, R., Kasariya, K., Sharma, A. R., & Singh, R. P. (2011). Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of nanoparticle Research, 13, 2981-2988. [DOI:10.1007/s11051-010-0193-y]
35. Vasquez, R. D., Apostol, J. G., de Leon, J. D., Mariano, J. D., Mirhan, C. M. C., Pangan, S. S., ... & Zamora, E. T. (2016). Polysaccharide-mediated green synthesis of silver nanoparticles from Sargassumsiliquosum JG Agardh: Assessment of toxicity and hepatoprotective activity. OpenNano, 1, 16-24. [DOI:10.1016/j.onano.2016.03.001]
36. Wasilewska, A., Klekotka, U., Zambrzycka, M., Zambrowski, G., Święcicka, I., &Kalska-Szostko, B. (2023). Physico-chemical properties and antimicrobial activity of silver nanoparticles fabricated by green synthesis. Food chemistry, 400, 133960. [DOI:10.1016/j.foodchem.2022.133960]
37. Widyaningtyas, A. L., Yulizar, Y., Bagus Apriandanu, D. O. (2019). Ag2O nanoparticles fabrication by Vernonia amygdalina Del. leaf extract: synthesis, characterization, and its photocatalytic activities. In IOP Conference Series: Materials Science and Engineering 509, p. 012022. DOI 10.1088/1757-899X/509/1/012022 [DOI:10.1088/1757-899X/509/1/012022]
38. Zubair, M., Azeem, M., Mumtaz, R., Younas, M., Adrees, M., Zubair, E., ... & Ali, S. (2022). Green synthesis and characterization of silver nanoparticles from Acacia nilotica and their anticancer, antidiabetic and antioxidant efficacy. Environmental Pollution, 304, 119249. [DOI:10.1016/j.envpol.2022.119249]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb