Search published articles


Showing 22 results for Stress

Dr Seyed Reza Hashemi, Eng Negin Akhondpor, Dr Ayoub Farhadi, Eng Elnaz Arabiyan,
Volume 0, Issue 0 (3-2024)
Abstract

The aim of this study was to investigate the effective genes on apoptosis (BAX and Bcl2) in liver and intestinal cells of broiler chickens fed silver nanoparticles coated on clinoptilolite under acute heat stress induction. 450 d old broiler chicks (Cobb 500) were used in five treatments and six repetitions, and 15 pieces were used in each experimental unit in the form of a completely random design. Experimental diets were: 1) control or basal diet 2) basal diet supplemented by 1% clinoptilolite 3) basal diet supplemented by 1% clinoptilolite coated with 0.5% nanosilver 4) basal diet supplemented by 0.15% organic acid and  5) basal diet supplemented by 1% clinoptilolite coated with 0.5% nanosilver and 0.15% organic acid. Silver nanoparticles coated on clinoptilolite were investigated using XRF and FTIR techniques. In order to induce heat stress, the birds were affected by heat stress for one week in the last week of the breeding period, and on the last day of the stress, liver and intestine samples were obtained to check gene expression. The results of this experiment show that the treatments of clinoptilolite and silver nanoparticles coated on clinoptilolite have an increasing effect on the expression of Bcl2 and Bax, while this effect was not seen in the organic acid treatment. In conclusion, it could be said that if silver nanoparticles are used in feeding livestock and poultry, it is better to use organic acid supplements to reduce the side effects of silver nanoparticles.
 
Roya Ghaffarri, Fariba Meighani, Homeira Salimi,
Volume 1, Issue 1 (12-2014)
Abstract

Mesquite is an invasive and problematic weed in warm and dry areas and so its management is very important. In order to study the effective factors on mesquite seed germination, the following studies were conducted to investigate: 1- seed viability; 2- the effect of constant temperatures on seed germination including 5, 10, 15, 20, 25, 30, 35 and 40°C independent dark and independent light conditions; 3- Effect of temperature fluctuations on seed germination including 10/0, 20/10 and 30/20°C; 4- the effect of scarification with concentrated sulphuric acid and physiacal scarification on seed germination; 5- the effect of planting depth seed on seedling emergence; 6- the effect of drought stress including 0, 100, 200, 300, 400, 500, and 600 Mm PEG on seed germination; and finally 7- the effect of salt stress including 0, 100, 200, 300, 400, 500, 600, and 700 mM NaCl on seed germination. All experiments were performed as completely randomized designs with 4 replications. The results showed that seed viability of mesquite was 81%. The optimum temperature for seed germination was a constant temperature- 30°C. In general, constant temperature was more suitable than temperature fluctuations for seed germination. The best seed planting depth for seedling emergence was 2 cm. The most seed germination was observed under the effect of 20 min scarification with concentrated sulphuric acid. Physical scarification had no significant effect on seed germination. While the study of salt and drought stresses effect showed that the most seed germination (after control without NaCl and PEG), was due to concentrations of 100 and 200 mM, seed germination decreased with the increase of NaCl and PEG concentrations. Based on the present results, light did not play a crucial role on seed germination. Therefore, mesquite seeds were not photoblastic. These characteristics are very important in making mesquite an invasive weed. Having precise information of these traits, enables us to have a better control over the management of this troublesome weed.


Hoora Momni, Mohsen Hosseini, Hamed Yousefzade,
Volume 2, Issue 1 (6-2015)
Abstract

This investigation was conducted to compare the photosynthetic indices in ironwood trees infected by Viscum album L. and healthy trees located both in stand and out of stand in plain forest of Tamishan, Nour city. In each position, five healthy and five infected trees were selected and photosynthetic parameters, stomatal conductance, transpiration and internal CO2 were examined. Results showed that the amount of photosynthesis and stomatal conductance in healthy and infected branches were varied depending on the position of trees, individual trees and branch type. The amount of transpiration and internal CO2 were significantly different in healthy and infected branches. The highest amount of photosynthesis, stomatal conductance, transpiration and internal CO2 both within and out of stand, were measured in healthy trees (except for stomatal conductance in out of stand). Both within and out of stand, healthy branch of infected tree indicates higher level of photosynthetic activity compared with infected branch. Also, twofold comparison of the four parameters investigated showed that photosynthesis, stomatal conductance, transpiration and internal CO2 in healthy branches within stand were higher than those out of stand. It was also discovered that Viscum album caused disruption in photosynthetic activities of the host plant that, is why conducting supplementary studies in this regard is suggested to future researchers.


Nayyer Mohammadkhani, Naser Abbaspour,
Volume 2, Issue 1 (6-2015)
Abstract

Salinity is one of the important environmental factors that limit plant growth and product. Grapes are classified as salt sensitive plants. This paper attempts to evaluate the salinity effects on membrane lipid peroxidation, antioxidant components and antioxidative enzymes activity in four grape genotypes (Vitis vinifera L., Gharashani, LaaleBidaneh, Sachagh and Shahroodi) that commonly grow in the regions around Urmia Salt Lake. We came to the conclusion that malondialdehyde content and antioxidative enzymes activity increased significantly (P<0.05) in roots and leaves of all these genotypes. Gharashani and LaaleBidaneh genotypes showed higher antioxidative enzymes activity and lower membrane lipid peroxidation. Also, salinity had a significant effect on the accumulation of total phenolics content and phenylalanine ammonia lyase activity in all genotypes. Gharashani genotype showed the highest total phenols and PAL activity. There was a significant positive correlation among antioxidant enzymes activity, total phenolics content and PAL activity in leaves of all genotypes. It seems that Gharashani and LaaleBidaneh genotypes have a better antioxidant system compared with others and show higher efficiency for salinity tolerance.


Azar Beikazade, Mohammadreza Imanpour, Vahid Taghizade,
Volume 2, Issue 2 (9-2015)
Abstract

Cortisol is a corticosteroid hormon which has important effects on osmoregulation in marine fish. In this study the effect of oral cortisol on resistance (salinity stress in 12ppt during 7 days) in common carp (cyprinus carpio) fry was investigated. For this purpose, common carp (1.36±0.12 gr) was distributed in 3 treatments and 1 control group in 3 replicates and fed with commercial food containing 0 (control), 50, 100 and 200 mg kg-1 food hydrocortisone during 8 weeks. At the end of the trial, hematocrit, biochemical blood parameters (glucose, calcium and total protein) and resistance of fish were determined. The results showed no significance in survival rates between treatments (p>0.05). Glucose levels in the control treatment was significantly lower than other treatments at the end of the trail by serological investigation (p<0.05). Fish were let in salinity stress and after 7 days all treatments showed a significant increase in the value of glucose (p<0.05). The highest value of glucose was observed in fish on fed 100 and 200mg hydrocortisone per kg-1 food )73.04±1.40) (p<0.05) and the highest level of haematocrit was observed after stress in the control group (61.67±2.08) (p<0.05). Calcium Ionic factor showed a significant increase in all treatments except for the control treatment (11.17±0.31) (p<0.05) and the highest value was observed in fish fed 200 mg hydrocortisone per kg-1. Total protein in fish treat-cortisol was significantly lower than the control group (p<0.05). The results of this study showed that oral administration of cortisol can improve the salinity resistance in the common carp fry


Mohammadreza Imanpour, Zahra Roohi,
Volume 2, Issue 2 (9-2015)
Abstract

This study was carried out to show the effects of herbal supplement of Sangrovit on the growth parameters, blood biochemical factors, survival and resistance to salinity of the Caspian kutum fry. Fish (1±0.003 g) were divided into four groups fed on diets containing sangrovit at different levels: 0 (control), 0.05, 0.1 and 0.15 % for 45 days. The results showed that there was a significant increase in the final weight, weight gain and specific growth rate of the fish fed on sangrovit diets (p<0.05). In addition, food conversion rate of fish fed on sangrovit diet was found to be significantly (p<0.05) lower than the control group. However, there was no significant difference in the condition factor, glucose and total protein levels of the experimental groups and the control group (p>0.05). On the other hand, blood cholesterol of the Caspian kutum was significantly increased in the control group (190.17±0.013 mg dl-1) in comparison to treatments sangrovit (p<0.05). Survival and resistance to salinity stress remained unaffected by dietary supplementation of sangrovit (p>0.05). The results of the present study also indicated that dietary Primalac beneficially affected the growth performance and blood biochemical parameters of the Caspian kutum fry. The findings of the present study indicated that the herbal supplement of sangrovit could improve the growth rate, feed utilization and blood biochemical parameters of the Caspian kutum fry.


Akbar Norastehnia, Maliheh Farjadi,
Volume 2, Issue 4 (3-2016)
Abstract

In this study, water stress was applied by polyethylene glycol at a concentration of 20 perecentage. To improve the resistance of the plants, the samples were treated by potassium nitrate at concentrations 5, 10, and 15 mM within 9 days. Changes in proline, total protein, photosynthetic pigments, carotene, anthocyanin, malondialdehyde, phenols, flavonols, flavonoids, soluble sugars and potassium ion were examined. The results showed that tobacco plants which had been exposed to drought used the accumulation of osmolytes such as proline, soluble sugars and potassium in order to balance their osmotic pressure. Drought stress also caused oxidative stress and increased the production of active forms of oxygen. As a result, non-enzymatic antioxidant defense system of tobacco plants including anthocyanins, flavonoids, flavonols and beta-carotene increased, which could be considered to be a major step for resistance to drought. The results also showed that the concentration of 15 mM potassium nitrate in particular, could significantly improve some of the harmful effects of stress and reduced photosynthetic pigments and proteins. Potassium nitrate could also bring down the MDA and beta-carotene levels to equivalent levels in control plants. As a result, it seems that using potassium can affect plant resistance to drought and plays an important role to reduce some harmful effects of stress.


Reyhaneh Sariri, Adeleh Raeofi Masooleh, Gholam Reza Bakhshi Khaniki,
Volume 2, Issue 4 (3-2016)
Abstract

Tea was planted in Lahijan by Kashefalsataneh in 1930. The main concern about important commercial plants such as tea is the formation of ice crystals in low temperatures. This can damage the live cells leading to lowering the quality of the plant and eventually its death. Formation of reactive oxygen species (ROS) and oxidative stress is the result of various environmental stresses leading to freezing. Investigating the variations in any of these factors could help to understand the mechanism of freeze resistance in ever-green plants. The aim of the present research was to investigate lipid peroxidation, the presence of antifreeze protein and variations in the activity of some antioxidant enzymes, including superoxide dismutase (SOD), ascorbate peroxidize (APX) and catalyse (CAT) in tea leaves subjected to 20, 0, -2, -5 and -8°C in tea leaves from the north of Iran. The results showed formation of an antifreeze protein with MW of about 20 KD in response to cold stress. It was also found that the activity of SOD, APX and CAT increased in tea leaves due to cold stress. The activity of SOD increased down to -8°C. APX and CAT increased their activity down to -5°C. On the other hand, the lipid per oxidation factor, MDA, was also elevated in response to the cold stress.


Hamzeh Amiri, Leila Moazzeni,
Volume 3, Issue 1 (6-2016)
Abstract

In order to study the interaction effects of salinity and ascorbic acid on the photosynthetic pigments, soluble sugar, proline, and protein in Satureja khuzestanica plant, factorial experiment was conducted in a completely randomized design (salinity in 4 levels 0, 40, 80 and 120g in 100kg soil and ascorbic acid in 2 levels 0 and 2 mM ) with 6 replicates. The results showed that salt stress reduced photosynthetic pigments amount by increasing the soil salinity from 0 to 40g NaCl in 100kg soil and then increased by 80g NaCl in 100kg soil and again decreased by concentration of 120g NaCl in 100kg soil. The amount of solouble sugar, proline and protein by the soil salinity increased from 0 to 40g in 100kg soil and then decreased in concentration of 80g NaCl in 100kg soil, in 120g NaCl in 100 kg soil increased amount of characters. In present of ascorbic acid photosynthetic pigments amount of pigments increased by increase the soil salinity from 0 to 40g NaCl in 100kg soil and then decreased by 80g NaCl in 100kg soil and again increased by concentration of 120g NaCl in 100kg soil. But, amount of solouble sugar, proline and protein by the soil salinity decreased from 0 to 40g in 100kg soil and then increased in concentration of 80g NaCl in 100kg soil. Finally, in 120g NaCl in 100kg soil decreased amount of characters.


Akbar Norastehnia, Gohar Yousefzadeh,
Volume 3, Issue 4 (3-2017)
Abstract

Application of some chemical components including plant hormones such as methyl jasmonate causes resi-stance to increase in environmental stresses. In this study, the effect of metyl jasmonate in different concentrations (10, 20 and 30 uM) on the elevation of the plant resistance was investigated in drouht stress. Tobacco seedlings were studied under drought stress caused by polyethylene glycol (20%) during periods of 3, 6 and 9 days. The results revealed that the imposed stress significantly increased soluble sugar content, MDA and non-enzymatic defense factors such as ant-hocyanin and proline. In contrast, it is reduced the amount of photosynthetic pigments, carotenoids and flavonoids. On the other hand, the use of methyl jasmonate decreased malondialdehyde as a marker of lipid peroxidation and values of some detent factors such as proline, beta-carotene and MDA. Meanwhile, it increased the amount of soluble sugars and photosynthetic pigments, anthocyanins, flavonoids and flavonols. As a result of the simultaneous reduction of lipid pe-roxidation and some antioxidants, it seems that using exogenous methyl jasmonate can help the plant withstand against drought stress conditions.


Zahra Roohi, Mohammad Reza Imanpoor, Valiolah Jafari , Vahid Taghizadeh,
Volume 4, Issue 1 (6-2017)
Abstract

This study was conducted in order to measure glucose, cholesterol and hematocrit as indicators to evaluate the effect of caraway seeds meal (CSM) on the health and resistance of common carp to salinity stress. To attain this goal, fish (2.457±0.057 g) were divided into four groups fed on diets containing different levels of CSM; 0 (control), 0.5, 1 and 1.5%. After 56 days of feeding, blood samples of the fish were obtained in five stages (once before and four times after stress) to evaluate glucose, cholesterol and hematocrit levels. The experiments indicated that salinity sign-ificantly affected glucose, cholesterol and hematocrit. On the first day after stress, the hematocrit and glucose levels were considerably increased in all groups compared with their levels before stress. After stress, cholesterol level signif-icantly decreased in all groups compared to before stress. The level of hematocrit indicated no significant difference among the groups before and after stress. On the first day after stress, the glucose levels significantly increased in trea-ted groups with CSM compared with the control group. The glucose and hematocrit levels were decreased gradually in all groups from the third day on. After stress, no differences were observed for survival rates among the experimental diets. However, the highest survival rate belonged to treated groups with CSM. The overall result indicated that the suplement of CSM has a positive influence on the glucose, hematocrit and resistance of common carp to salinity stress.


Raheleh Ahmadpour, Saeed Reza Hosseinzadeh, Nezam Armand, Somayeh Chashiani,
Volume 4, Issue 3 (12-2017)
Abstract

Water stress is one of the most important factors limiting the growth and yield of plants in many parts of the world. In order to evaluate the effects of water stress on some morphological, physiological and antioxidant enzyme activity traits of lentil, four lentil cultivars (i.e. Gachsaran, Kimia, Ziba and Robat) in four water deficit treatments including 25%, 50%, 75% and 100% of the field capacity (control) were studied in a factorial experiment, based on a completely randomized design with three replications. Water stress at 25 and 50% field capacity significantly decreased morpho-physiological traits and significantly increased antioxidant enzyme activity, proline and protein contents of all genotypes in comparison with the control group. Gachsaran and Robat cultivars were superior in most traits in comparison with the Kimia and Ziba cultivars. Under severe stress, the amounts of  proline and protein contents, CAT and SOD enzyme activity were significantly higher in Robat and Gachsaran cultivars than those of the Kimiya and Ziba cultivars. Results showed that Robat and Gachsaran cultivars were probably affected less by water stress due to more stress tolerance using various mechanisms such as more antioxidant enzyme activity, increased proline, proteins and photosynthetic pigments contents. Studied traits were introduced as suitable markers for identification of drought tolerant genotypes. Accordingly, Robat and Gachsaran cultivars were introduced as tolerant cultivars for cultivation under rainfed conditions.
Maryam Rafieirad, Zeinab Eydipour, Shahrbanoo Alami Rostami,
Volume 5, Issue 2 (9-2018)
Abstract

In patients with cerebral ischemia, both during hospitalization and in the community, the prevalence of major depression is evident. Since the depression has a negative impact on recovery, its timely diagnosis and treatment is essential. This study aimed to evaluate the effect of the oral administration of Chevilan extract (Ferulago angulata hydroalcoholic extract; 100, 200 and 400 mg/kg) on brain oxidative stress indices and depression after permanent bilateral common carotid artery occlusion or ischemia/hypoperfusion in male adult rats. A number of 35 rats were divided into a control group, an ischemic group and ischemic groups receiving doses of 100, 200 and 400 mg/kg of Chevilan extracts for 14 days by gavage. To make animal models of permanent cerebral hypo perfusion/ischemia, right common carotid artery was ligatured first and the left one ligatured with an interval of one week. To evaluate depression, immobility in the forced swimming time of each rat was measured and then the rat’s brain tissues were extracted to separate hippocampus and measure malondialdehyde. The results showed that ischemia/hypoperfusion increased brain oxidants such as lipid per oxidation (LPO) and immobility. Also, ischemic rats treated with all three doses of the Chevilan show significant reduction in the concentration of MDA hippocampus and in immobility time at a dose of 100 mg/kg and 200 / 400mg, respectively. Increased swimming time was observed in all three groups of extract recipients. It was found that Chevilan extract with antioxidant effect can reduce the side effects of ischemia such as depression.
 
Pardis Ghorbani Salkuyeh, Mohammad Mehdi Sohani, Amin Abedi,
Volume 5, Issue 2 (9-2018)
Abstract

Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout mutant (ssl7) along with the wildt ype were treated with different concentrations of NaCl. The expression level of salt stress genes including P5CS1, NCED3, AAO3 and RD29A at 150 mM NaCl demonstrated that the expression was significantly higher in ssl7 compared with the expression in Col-0. The activities of Catalase (CAT), Ascorbate Peroxidase (APX), Peroxidase (POD) and Superoxide Dismutase (SOD) were measured in different concentrations of NaCl. The results suggested that the enzymes activities were significantly higher in ssl7 compared with wild-type Col-0. In total, the results suggest that SSL7 might have a salicylic acid-dependent negative regulatory role in plant resistance to salt stress.
 
Tahereh Naeemi, , Baratali Fakheri,
Volume 6, Issue 2 (8-2019)
Abstract

Plant growth is greatly influenced by environmental stresses including water deficit, salinity and extreme temperatures. Therefore, the identification of genes, especially regulatory ones whose expression enables plants to adapt to or to tolerate these abiotic stresses, is very essential. MYB proteins, a superfamily of transcription factors, play regulatory roles in developmental processes and in defense responses in plants. Members are characterized by a structurally conserved DNA-binding domain, i.e., the MYB domain. Thus, a factorial experiment in a randomized complete block design with three replications was carried out to investigate the effect of different levels of drought stress on the relative expression of TaMYB73 transcription factor gene using Real Time PCR method at Biotechnology Research Institute of Zabol University. The experimental treatments included durum wheat genotypes (Shabrang, Behrang, Karkheh, Aria and Dena) and drought levels (5, 10, 15, 20 and 25% of field capacity). Seedlings of genotypes
were cultured in pots and drought stress was exerted after 45 days (four to five leaves). Data analysis was performed using Ratio =2 -ΔΔCT and SAS software version 9.1. The results of the 2-way ANOVA for the effect of genotype, drought stress and cross-effects of drought stress on the relative expression of TaMYB73 gene and the amount of osmotic regulators (Proline and Carbohydrate) at different stress levels (20, 15, and 5% of field capacity) were significant in comparison with the normal condition (25% of field capacity) at 1% probability level. With the increase of drought stress level from 5 to 20% of crop capacity, relative to the normal level (25% crop capacity), the relative expression of TaMYB73 gene and osmotic regulators of proline and carbohydrates increased in Beharang, Karkheh and Dena genotypes. Therefore, Karkheh and Dena genotypes showed greater resistance to drought stress among the 5 genotypes studied.
 

 
َabolfazl Baghbani-Arani, Seyed Ali Mohammad Modarres-Sanavi, Masoud Mashhadi Akbar Boojar, Zohrab Adavi, Hamid Dehghanzade-Jezi,
Volume 6, Issue 2 (8-2019)
Abstract

In order to determine the effects of water deficit stress, nitrogen fertilization and zeolite on chlorophyll fluorescence, pigments, trigonelline content and seed yield in, a split factorial experiment was laid out in a randomized complete block design with three replications. Five irrigation regimes were randomly applied to the main plots. Subplots included six treatments and consisted of a factorial combination of three nitrogen fertilization (untreated plots, vermicompost at a rate of 2.7 ton ha-1 and nitrogen chemical fertilizer at a rate of 11 kg.ha-1) and two zeolite rates (0 and 9 ton.ha-1). The results demonstrated that (Fm), (Fv), (Fv/Fm), chl a, b, total chl content and also seed yield were significantly reduced by water deficit stress, wheras minimum fluorescence (F0), carotenoid and trigonelline concentrations were increased. In addition, the highest Fv/Fm, chl a+b content and the lowest F0 and carotenoids were observed when irrigation was done after unloading 40% of ASW. In most treatments vermicompost increased the yield (by 25.51% and 98.32% in 2014 and 2015, respectively) and grain trigonelline concentration (7.46% in 2014) in Fenugreek. Mild water stress with vermicompost treatment is recommended for the production of trigoneline from Fenugreek seeds.

Mehrnoush Daneshvar, Mahmood Maleki, Shahryar Shakeri, Amin Baghizadeh,
Volume 6, Issue 4 (1-2020)
Abstract

Phosphorus, the most essential nutrient for plants, becomes quickly unavailable for the plants in the soil. Phosphate solubilizing bacteria (PSB( can play an important role in providing Phosphorus for plants. In this study, the PSBs were screened from plant rhizosphere by Pikovskaya method. Then, the growth rate and phosphate solubilizing ability of 9 superior strains were measured at different temperatures and levels of salinity and pH. The best strain was identified by 16S rDNA gene sequence analysis. Finally, the genetic diversity of phosphate solubilizing strains were examined by RAPD markers. Results showed that 25 strains were capable of solubilizing insoluble phosphates among the 57 isolates studied. Of the nine superior strains, Cke1 had the highest solubilizing index with the average growth rate under all conditions and was introduced as the best PSB strain identified in the present study. 16S rDNA gene sequence analysis showed that this strain belonged to the Enterobacter genus. The results of genetic variation showed that all stains were divided into six groups and three strains that had the lowest similarity with other strains were placed in three separate groups. Given that Cke1 strain has the ability of solubilizing the insoluble phosphate in different stresses, it can be a good candidate for providing phosphorus at temperatures of 30 and 35 °C, 1.2% and 1.8% salinity levels and pH levels of 6 and 8 for the crops.


Faezeh Asheqian, Sedigheh Kelij, Naser Jafari,
Volume 6, Issue 4 (1-2020)
Abstract

The purpose of this research was to identify the structural adaptations in three populations of Convolvulus persicus L. on coastal areas in Mazandaran Province, whose populations of which are severely reducing due to the intense environmental stresses of the coastal zone. In general, annular collenchyma, isobilateral mesophyll, amphiphloic siphonostele, abundant presence of laticiferous tubes, numerous druse crystals and the presence of periderm in rhizome can be introduced as the most important morpho-anatomical strategies utilized against harsh environmental conditions. Sari population was foud to have the most various structural toleration mechanisms in comparison with Babolsar and Nour populations. Few differences were observed in anatomical characteristics in the three populations of Convolvulus persicus as the evidence for high intra-specific phenotypic variability, leading to local adaptation and increase of the tolerability of plants against environmental changes.
 
 
َamjad Saedi, Hossein Moradi, Mahnaz Karimi,
Volume 6, Issue 4 (1-2020)
Abstract

Aloe vera L. is one of the most valuable plants in the pharmaceutical, cosmetic, sanitary and food industries. In vitro culture is used for commercial production and due to the abundant application of this plant, extensive research has been performed on the in vitro culture of Aloe vera. For this purpose, the present study was conducted at two stages. At the first stage, the best method of sterilization of explants derived from Aloe vera offshoots was investigated. At the second stage, the effect of the type of explants, the light condition (dark and bright) and the effect of BAP (Benzyl Amino Purine) and NAA (α-Naphthalene acetic acid)) growth regulators on regeneration and the amount of phenolic compounds were studied. A factorial experiment was executed on the basis of a completely randomized design with three replications. The best sterilization protocol was 0.1% mercuric chloride (for 2 minutes), 70% ethanol (for 30 seconds) and 15% sodium hypochlorite (for 5 minutes). The little white explant derived from the base of leaves, with the lowest percentage of phenol and the highest survival rate (67.5%) in darkness, was found to be the best candidate. MS medium supplemented with 0.75 mg / L BAP and 0.25 mg / L NAA resulted in the highest stem number (2.5) and stem length (42.107 mm), establishment percentage (73%), leaf number (6.33), leaf diameter (4.8 mm), chlorophyll b (9.216 mg/g) and carotenoids (4.81 mg/g). The highest content of chlorophyll a (56.07 mg/g) and total chlorophyll (61.35 mg/g) were found in samples treated with hormonal medium, supplemented with 1.5 mg / L of BAP with 0.5 mg / L of NAA. The maximum number (3) and average length (33.3 mm) of roots were observed in samples treated with the hormone-free medium.
 

Mohsen Alizadeh, Nezam Armand, Maryam Rahimi, Shokoufeh Haji Hashemi,
Volume 9, Issue 1 (3-2022)
Abstract

Seaweed extract can improve the physicochemical properties of the soil and has a favorable effect on the plant growth and development due to having high nutrient content, high water holding capacity, plant growth regulators and beneficial microorganisms. The aim of this experiment was to investigate the effect of Ascophyllum nodosum extract, a brown alga, on the morphophysiological characteristics of bean plant (Phaseolus vulgaris) under water stress. The experiment was performed in a Completely Randomized Factorial Design with three replications. Experimental treatments included 4 concentrations of foliar application of seaweed extract (0, 0.2, 0.4 and 0.6%) and 3 levels of water stress including no stress, mild stress and severe stress (irrigation at 75, 50 and 25% of field capacity, respectively). The results showed that the interaction effects of stress and algal extract on the evaluated traits were not significant. However, the seaweed extract significantly increased the leaf area, number of the leaves, leaf length, surface and length of the roots, root dry weight, the content of chlorophyll a and b and the total chlorophyll content. Application of algal extract at levels of 0.2 and 0.4% caused a significant increase in the evaluated parameters as compared with the control plants. The evaluation of water scarcity stress effects showed a significant reduction in the all studied characteristics in accordance with increasing water stress level from 75% to 25% of field capacity. The results of this study showed that foliar application of seaweed extract significantly increased some morphological and photosynthetic properties, while water stress significantly reduced the investigated parameters.

 

Page 1 from 2    
First
Previous
1
 

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb