Search published articles


Showing 3 results for Magnetic Nanoparticle

Sorayya Asgari, Ebrahim Najd Gerami, Samad Zare, Ramin Manaffar,
Volume 3, Issue 1 (6-2016)
Abstract

Nowadays, nanoparticles (NPs) have the great potential application in different industries. Among all NPs, titanium dioxide NPs is the biggest ecotoxicological and ecophysiology concerns due to the increase of anthropogenic input into the aquatic ecosystems. In this study, the effects of titanium dioxide NPs enriched yeast on the growth, survival; digestive enzymes activity and lipid metabolism in Artemia urmiana (AU) and Artemia franciscana (AF) were investigated. The experiment was designed in two treatments (control and enriched yeast with titanium dioxide NPs) and each with four replicates for both Artemia species. At the end of experiment, the results indicated that titanium dioxide nanoparticles did not affect on the Artemia species growth but significantly increased AF survival. No significant difference was observed in AU survival. Also the results showed, NPs significantly decrease AU digestive enzymes activity and reverse pattern was observed for AF. The effect of NPs on the body lipid content was investigated in Artemia species and the results revealed that all the NPs decrease this parameter in AU but did not affect on AF lipid body content. The results obtained in this experiment, suggest that the eco-physiological effects of titanium dioxide NPs different in Artemia urmiana and Artemia franciscana.


Azra Saboora, Maryam Amiri Rad, Ezat Asgarani, Tayebeh Radjabian,
Volume 5, Issue 4 (3-2019)
Abstract

DNA extraction from plant tissues often causes most problems. For example, unsuccessful removal secondary metabolites during extraction, such as phenolic compounds in aromatic and medicinal plants, cause to some mistakes in result of molecular experiments by using of the extracted DNA. Achillea wilhelmsii is a medicinal plant belong to Asteraceae family and native to Iran, there is little information about genomic data in this plant. Therefore, optimizing of the DNA extraction methods for obtaining suitable quality and quantity yield is necessary. In this study, two traditional DNA extraction methods (using fresh and herbarium leaf samples) and commercial DNA kit MAGNANTM in Yarrow have been compared. Results showed that DNA extracted from fresh leaves of yarrow according to Khanuja et al. (1999) was better than the other methods which mentioned in this research, because of the increased amount of extracted DNA and reduced harmful compounds such as RNA, polysaccharides, protein and secondary metabolites. To evaluate the quality of extracted DNA from herbarium specimens showed that, in spite of the high yielding DNA (10-50 fold ratio to the other methods), quality of this extract was low on agarose gel because of smear and broken down the molecules. It can be considered as a limitation of the extract in molecular experiments. Procedure of MAGNANTM DNA kit was appropriate for reducing time and cost of the extraction as well as low contamination to protein and RNA, but the process needs some modifications for yarrow to increase the amount of extracted DNA.
Neda Tekiyeh Maroof, Nahid Aboutaleb, Maryam Naseroleslami,
Volume 7, Issue 3 (11-2020)
Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) have made extensive advances in nanotechnology. The unique properties of these particles have expanded their application in various fields, including medicine. One of these applications is non-invasive analysis for cell tracking. However, the possibility of toxicity in cells is reported by these nanoparticles. Due to the fact that cellular damage caused by iron oxide nanoparticles is concentration-dependent, the determination of the appropriate  concentration of iron oxide nanoparticles is very important to prevent cell damage or cell death due to apoptosis. The aim of this study was to find a concentration of SPIONs which does not result in apoptosis. Therefore, the effects of different concentrations of iron oxide nanoparticles on cell survival were investigated, and the their effects on increased gene expression involved in apoptosis (p53) in human amniotic membrane derived mesenchymal stem cells (hAMSCs) were evaluated. First, stem cells were extracted from human amniotic membrane tissue and cultured. To demonstrate the multipotent characteristic of hAMSCs, these cells were differentiated into adipose, bone, and chondrocyte cell lines. Then, the viability of the cells treated with different concentrations of iron oxide nanoparticles (200, 150, 100, 50, 0 μg / ml) over a period of 24 and 48 hours was evaluated by MTT method. The effect of the concentrations of 0, 100,150 and 200 μg / ml of nanoparticles after 24 hours in hAMSCs was investigated for the expression of p53 gene by Real-Time PCR. hAMSCs were spindle-shaped in a two-dimensional culture. Flow cytometry examination of surface markers revealed that these cells were able to express CD 29, CD90 and CD105 but they were unable to express CD34 and CD45. The results of the multi-potency assay of hAMSCs showed that these cells were capable of being differentiated into adipocyte, bone and chondrocyte cell lines. Iron oxide nanoparticles had no significant effect on cell survival at the concentrations of 50 and 100 μg / ml in 24 hours. However, cell viability decreased significantly after the concentration of 150 μg / ml (42 ± 1.4%, p<0. 001. The results of Real-Time PCR  analysis showed that the expression of p53 gene significantly increased at concentrations of 150 (2.4±0.1, P < 0. 001) and 200 μg / ml (4.1 ± 0.11, P < 0. 001). According to the results, the nanoparticles used in this study were appropriate at concentrations ≥ 100 μg / ml for cell tracking.

Page 1 from 1     

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb