Volume 4, Issue 1 (AbstractE3.pdf 2010)                   2010, 4(1): 809-826 | Back to browse issues page

XML Persian Abstract Print

Abstract:   (10666 Views)
Gotvand dam reservoir with over 90 km length is surrounded by Gachsaran, Mishan, Aghajari and Bakhtiari formations. The noticeable point in the dam reservoir is the presence of Gachsaran Formation that is composed of considerable volume of salt located  4 km upstream of dam. Salinity of dam water due to dissolution of salt in reservoir water can cause serious environmental problems. In addition to direct dissolution of salt in contact with reservoir water, slope instability can also influence on this process. Probable sliding in salty layers of slopes will insert a significant volume of salt in contact with reservoir water in a short time. In order to study the land-sliding process in reservoir area and also analysis of the effect of dissolution of salty layers on sliding, characteristics of dominant material engineering of mass constituent were defined by rock mechanics experiments. Then the results of performed tests on rock samples and GSI method were used to estimate the engineering parameters of rock mass. To investigate the land-sliding process in reservoir area and also the effect of dissolution of salty layers on sliding, some salt samples were transferred to the laboratory. Using circulation method, solubility of those samples were examined in different conditions. The results were generalized to the reservoir condition. Eventually, slope stability were analyzed by modeling with SLIDE software, considering different levels of reservoir water, influence of dissolution of salty layers. The obtained results indicate that slidings in reservoir area are mostly shallow and are caused by dissolution of salty layer.
Full-Text [PDF 1293 kb]   (3900 Downloads)    
Type of Study: Other |
Accepted: 2016/10/5 | Published: 2016/10/5

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.