Search published articles


Showing 114 results for Subject: En. Geology

Abbas Zeighmi, ,
Volume 10, Issue 2 (11-2016)
Abstract

The Sharbyan river is located in the Sharbyan village, Sarab, East Azarbaijan province. This river alluvials are supplied from rock units belonging to Oligo-miocene and Miocene, including conglomerate, sandy lime, limestone, marl and shale. These deposits are used as raw materials of producing hot asphalt in two asphalt plants that have been built in the vicinity of this river, and the produced asphalt is used mainly in the neighbor provinces that have rather cold climate. Combined analysis of the sediments indicate high level of silica, around 60 percent, for which  the prepared asphalt  is prone to stripping phenomenon in the cold seasons. During this process, the moisture penetration in aggregates and asphalt mixtures, causes weakening bitumen-asphalt materials bounding and finally asphalt demolition.  The role of sediments and its impact on the quality of asphalt has not been studied in this area, therefore, the solutions for dealing with this phenomenon is also examined and presented. This study is based on the conventional sedimentology methods, different standards of ASTM, AASHTO and Ministry of Roads and Urban Development guidelines. In this study, the combined effects of hydrated lime (lime filler) and natural filter materials with different proportions was used to deal with the stripping phenomenon, and  the parameters of strength, softness, indirect tensile strength, asphalt quality and durability criteria, have been appraised. The results show that these parameters are improved using additives in various proportions and the produced asphalt quality and durability is better. The results illustrate, when the lime is used in its maximum ratio of 3%, stripping score is 1 and is disappeared by other parameters improvement


, M Fallah,
Volume 10, Issue 2 (11-2016)
Abstract

This paper presents landslide assessment and landslide hazard zonation of the Polroud Dam area. Polroud Dam is one of the largest dams that are in construction, 29 km south of Roudsar in Gilan Province. Considering to geomorphology and geological conditions of the area, the site is susceptible to landslide hazard. Field survey shows many evidences of the instabilities especially in the slopes overlooking to the dam and the reservoir. The historical record also demonstrates high potential of the region to slope instabilities. A large landslide that occurred in 1996 discern that the frequency of the hazard in the region. Therefore, Identification of the landslide potential hazard is vital before impounding the reservoir. In this study, we investigated landslide hazard in the site and we have prepared landslide hazard zonation map using the main parameters. These parameters include; slope percent, slope aspect, lithology, fault, roads, drainage catchment, elevation, vegetation and precipitation amount. Analytic Hierarchical Process (AHP) has been used to prepare and to cross the maps. The results show that about 26 percent of the slopes are situated in highly hazard zones. It was determined also that lithology and slope aspects play main role in occurring of the landslides in the study area.
 


P Naghshin, H Shahir ,
Volume 10, Issue 2 (11-2016)
Abstract

Soil nailing is a prevalent method for temporary or permanent stabilization of excavations which, if it is used for permanent purposes, the seismic study of these structures is important. There are a few physical models, with limited information available, for the study of behavior of soil nailed walls under earthquake loading. Numerical methods may be used for the study of effects of various parameters on the performance of soil nailed walls, and this technique has been used in the current paper. In this research, the effects of various parameters such as the spacing, configuration, and lengths of nails, and the height of wall on seismic displacement of soil nailed walls under the various earthquake excitations were studied. To investigate the effects of the configuration and the lengths of nails on the performance of these structures, two configurations of uniform and variable lengths of nails have been used. To study the effects of the spacing between nails and the height of the wall the spacings of 2 and 1.5 meters and the heights of 14, 20, and 26 meters have been considered. The seismic analysis has been carried out using the finite element software Plaxis 2D. To analyze the lengths' of nails, it was assumed that the safety factors of stability of different models are constant, and the limit equilibrium software GeoSlope was used. After specification of the lengths of nails based on constant safety factor of stability, the deformations of the models under several earthquakes records were analyzed, and recommendations were made on minimizing the deformations of soil nailed walls under seismic loading.


, ,
Volume 10, Issue 3 (2-2017)
Abstract

Komrud village of located on the slope is particularly susceptible to landslides. The slope stability analysis is of special importance because of landslides or slope failures can cause major damages life and financial. In studies to determine the factors and parameters affecting the slope is unstable. According to studies, one of the most important factor affecting landslides in this area is the force exerted by the acceleration of the earthquake. With this approach, the maximum possible acceleration of earthquakes in a 50-year period is estimated at the site. On the other hand, based on studies of the geological is determined profile of the slope geometry, physical and resistance parameters to the landslide susceptible. Then using the modeling software in FLAC 2D 5.00 elasto-plastic structural models, with failure criteria Mohr – Coulomb, stress-strain behavior of the soil has been examined to pseudo-dynamic method. A base position at the top of the slope is considered and displacement it horizontally to reach the maximum possible acceleration is calculated and recorded. The results of this study indicate that Horizontal displacement followed the landslide, can be occur below the maximum acceleration estimates.


Akbar Cheshomi, , ,
Volume 10, Issue 3 (2-2017)
Abstract

Soil classification is one of the major parts of geotechnical studies. So assessment of existing methods for soil classification in different areas is important. For soil classification is used in situ and laboratory test results. Sampling and identification tests are laboratory methods for soil classification. CPTu test is in situ method for soil identification and classification, due to accuracy and speed, this test is used widely in geotechnical study today. Many researchers are proposed some charts for soil classifications based on the parameters measured in CPTu test. In this paper for evaluation the performance of these methods, 58 CPTu test results have been used. These tests are related to four areas in southern Iran. The soils are classified by CPTu methods and then they are compared with 372 laboratory soil classification. Research results show the chart proposed by Robertson (1990) which based on Qt, Ft and Bq variables has the best adaptation with the laboratory soil classification in these studied areas. Then according to data obtained from research, proposed a modified charts based on Rf, qt-u0/σ΄ v , that show 90% adaptation with laboratory soil classification.


Hadi Atapour, , ,
Volume 10, Issue 3 (2-2017)
Abstract

The Schmidt hammer provides a quick and inexpensive measure of surface hardness that is widely used for estimating the mechanical properties of rock material such as uniaxial compressive strength and Young’s modulus. On the other hand, Schmidt rebound hardness can be used for a variety of specific applications. In the mining industries, it is used to determine the quality of rock, which is common practice when constructing rock structures such as those found in long wall mining, room and pillar mining, open-pit mining, gate roadways, tunnels, dams, etc. However, a number of issues such as specimen dimensions, water content, hammer type, surface roughness, weathering, testing, data reduction and analysis procedures continue to influence the consistency and reliability of the Schmidt hammer test results. This paper presents: a) a critical review of these basic issues and b) avaluate the effect of temperature, moisture and uniaxial compressive stress on Schmidt hammer hardness. It was found that water content has a significant effect on the Schmidt rebound hardness (SRH) of rocks. So that increase of water content substantially reduced the SRH of samples. Temperature also had a considerable influence on the SRH. However, relationship between SRH decreases with increasing temperature for tested samples were linear. Also tests results showed that uniaxial loading of samples increases the SRH values.


, Davood Fereidooni,
Volume 10, Issue 4 (5-2017)
Abstract

This research focuses on the identification and description of various features of pseudokarst in different parts of Alvand granitic batholith, Hamedan, west of Iran. In the literature, karst features have been presented as specific types of terrain or landscapes with particular characteristics suites of well-known surface and subsurface dissolutional forms. Whereas, pseudokarst refers to non-dissolutional surface or subsurface features and landforms created in different areas such as slopes, coastal lines crushed stone areas, lava tubes and permafrost regions. In this research, a comprehensive field investigation program has been carried out. During the field investigations, the most important features of pseudokarst in Alvand granitic batholith have been recognized and classified. Results show a wide range of pseudokarst features in the Alvand granitic rock masses. These landforms are created by erosion, weathering processes and some holes caused by rock block movements along the rock slopes. Some of the most important forms and features of the pseudokarst in the studied area are consist of tafoni, genama, pseudokarren, talus caves, caves associated with the residual blocks and erosional forms along joints and fractures within the granitic rock masses


Aida Jahed Shiran, Masood Azhdarifar, Afshin Meshkat-Dini,
Volume 10, Issue 5 (7-2016)
Abstract

This research is focused on an analytical approach to investigate the seismic performance of tall building under scaled near-field earthquake records. To achieve this objective, it is employs medium to high rise steel bundled-tube rigid frames. The examined structures are designed according to the Iranian seismic code 2800 (4th edition). To study the seismic response, groups of near field earthquake records with their associated properties are selected to perform non-linear time history analyses. The most important characteristic of the chosen near-field earthquake records is the presence of powerful long-term velocity pulses which distinguishes them from far-field earthquake records. The first part of the mentioned ensemble includes two recorded strong ground motions in Iran i.e. Tabas 1978 and Bam 2003, respectively and two powerful records of the Northridge 1994 earthquake. The second part contains one far-field record of the Northridge 1994 earthquake. The selected records are scaled based on the Iranian seismic code 2800 (3rd and 4th editions). The characteristics of seismic performance of each structural model, including maximum relative displacement of each story, seismic base shear and the formation of plastic hinges in the resistant skeleton have been carefully evaluated. The results indicate that using the 4th edition of the Iranian seismic code 2800 produces noticeably lower values of scale factor and their associated seismic responses in the studied structures as well as the nonlinear demand of the main load bearing members under scaled records with those factors, compared to the corresponding analytical cases based on the 3rd edition of the Iranian seismic code 2800. According to the results of this study, the rate of the drift parameter variations of structures that have been evaluated on the basis of seismic code 4th edition in comparison with the seismic code 2800 are experiencing a relative reduction about 30%.
Abdolhosein Haddad, Hamed Javdanian, Faezeh Ebrhimpour,
Volume 11, Issue 1 (8-2017)
Abstract

./files/site1/files/2Extended_Abstract.pdfExtended Abstract
(Paper pages 29-50)
Introduction
In some soils, special phenomena happen with increases in their moisture content that sometimes inflict major damages on development projects. Dispersive soils are one type of such soils. The physico-chemical properties of the particles in dispersive soils cause them to disperse and separate from each other upon contact with water. If dispersive clays are not accurately identified, they will cause damages and failures. In the Simin Dasht region of Semnan Province, some hydraulic structures have incurred serious damages because they are located on dispersive soils.
The present research studied the soils around the canal transferring water from the Simin Dasht to Garmsar. This 37-kilometer long canal is situated in Semnan Province between the Simin Dasht and the Garmsar diversion Dams. Scouring and soil erosion under the concrete lining of the canal has led to the destruction of the structure. After visiting the site and taking soil samples, double hydrometer and pinhole tests were performed. The effects of adding various amounts of cement, lime and aluminum nitrate on amending dispersive clays were studied and compared in the Simin Dasht region of Semnan Province.
Experiments
The effects of the quantities of cement, lime and aluminum amendment materials on stabilization of dispersive soils in the Simin Dasht region of Semnan Province were investigated. Two types of dispersive clayey soils were amended. Table 1 presents the characteristics of the soils. The effects of various amounts of lime, cement, and aluminum nitrate on reduction in the degree of dispersion in the tested soils were studied. The cement, lime, and soil samples were dried at 40˚C for 24 hours. It must be mentioned that the amount of added lime, cement, and aluminum nitrate were zero, 3, 5, and 7 percent.
Table1. Characteristics of dispersive soils used in this reserch
Gs Optimum Moisture (%) Plasticity Index, PI (%) Plastic limit, PL (%) Liquid limit, LL (%) Natural water content (%) Soil
2.72 15 2.54 15.09 17.63 13.84 A
2.66 11 6.33 16.11 22.44 3.02 B


Results
Average changes in discharge passing through the dispersive soil samples A and B, and through samples of these soils amended with lime, cement, and aluminum nitrate in pinhole tests are presented in Figures 1(a-f), respectively. Figure 1a indicates that the behavior of the A soil samples amended with lime did not follow any specific trend, but we can cautiously say that soil A will become non-dispersive when lime is added at 4.5 percent at all moisture contents. Increases in the quantities of the cement added to the dispersive soils A and B to stabilize them independent of the moisture content of the soils were also investigated (Figure 1c, d). Behavior of the A soil samples stabilized with aluminum nitrate followed a specific trend (Figure 1 e, f) contrary to those amended with the other stabilizers.
Conclusions
Results of the tests show that dispersion in soil A was amended (without completely preventing the occurrence of the scouring phenomenon) by the addition of cement or lime at 5 percent or aluminum nitrate at 3 percent. Moreover, dispersion in soil B was amended by the addition of cement at 3 percent, lime at 5 percent, or aluminum nitrate at 3 percent. Aluminum nitrate was a better and more effective amendment material for the dispersive soils compared to lime. Therefore, aluminum ions replaced the other ions in the structure of dispersive clays more suitably compared to calcium ions. Comparison of the results obtained from the pinhole tests performed on soil samples amended with aluminum nitrate, lime, and cement suggests that it took a shorter time for the samples to be stabilized with aluminum nitrate compared to the other two amendment materials.



Figure1 Variation of discharge due to soil stabilization, Lime (a and b), Cement (d and c), Aluminum nitrate (e and f)
 
Nastaran Ehsani , Mohammad Reza Ghayamghamian, Mohsen Fazlavi , Ebrahim Haghshenas,
Volume 11, Issue 1 (8-2017)
Abstract

./files/site1/files/1Extended_Abstract.pdfExtended Abstract
(Paper pages1-28)
Introduction
The earthquake is one of the most devastating natural disasters that always threats human societies in terms of health and financial issues. Iran is one of the most seismic prone countries of the world due to locating on Alpine- Himalayan Orogenic belt. On the other hand, growing population and increased construction of tall buildings, increases the damages caused by large earthquakes, especially in large cities. Karaj is one of the most populous cities in Iran which there has been considerable industrial and economic development in recent years. When an earthquake occurs, seismic waves radiate away from source and travel rapidly through the earth crust. When these waves reach the ground surface, they produce shaking that may last from several seconds to a few minutes. During earthquakes, different alluviums with different structures show various reactions. It is well-accepted that, besides the earthquake magnitude and fault distance, local geologic conditions, known as site effects, can also exert significant influences on characteristics of the seismic waves such as amplitude, frequency content and duration of strong ground motion at a given location. The seismic ground motion at any site is influenced by the type of soil in that region. Younger and softer soils usually amplify ground motion more than older soils or bedrocks .
There are theoretical and experimental methods to evaluate the site response. In the present study, the Nakamura's H/V spectral ratio method has been used to evaluate the resonance frequency in 37 locations at Karaj site. In addition, a preliminary 1-D site response modelling has been conducted using Deepsoil program according to downhole, array and geology data. Site frequencies obtained from modelling are presented and compared with site frequencies obtained through microtremor measurements.
Materials and Methods
Single station microtremor measurements at the Karaj site were carried out by the International Institute of Earthquake Engineering and Seismology (IIEES) in 2012 with a three-component broadband seismometer (Guralp CMG-6TD). In the present study, we have used 37 microtremor data along the north-southwest profile because at this profile, geological section was available and these stations contained geotechnical boreholes data. Dynamic range of sensor changes between 0.033 -50 Hz and has a natural period of 1 second. 24-bit analog-to-digital (A/D) converter digitized the recorded data. The recording system was operated continuously for about 30 minutes with sampling frequency of 100 Hz. The use of ambient vibrations for analysis of the local site effects has been studied in detail in the framework of the European research project SESAME (Site Effects Assessment Using Ambient Excitations). The recommended guidelines on the H/V spectral ratio technique are the result of the comprehensive and detailed analysis performed by the SESAME participants during three years of investigations (2001-2004).
H/V spectral ratio was carried out by the Geopsy software. The process starts by converting data from binary format to ASCII format. After DC offset removal, eighth order Butterworth band pass filter used within the range of 0.1 Hz to 50 Hz. The Anti-triggering algorithm STA/LTA has been selected to reject energetic transients from ambient vibration recordings, so STA and LTA were considered respectively 1 and 30 second. Minimum and maximum STA/LTA thresholds were selected between 0.2 and 2.5. For each station, the time-series of the record is divided into windows of 40 to 100 seconds in three components with an overlap of 50%. Also, a cosine taper with the length of 5% of the total window length was used at each end.
The amplitude spectra of each selected window is computed with a fast Fourier transform (FFT) and smoothed using the Konno-Ohmachi function (Bandwidth=40). Then, two horizontal components are merged by squared average. Finally, the H/V spectral ratio of Nakamura is applied for each individual window, and the final predominant frequency is obtained by averaging the H/V spectral ratio of all window. The presence of clear peak on H/V spectral ratio curve is indicative of the impedance contrast between the uppermost surface soil and the underlying hard rock, where large peak values are generally associated with sharp velocity contrasts, and is likely to amplify the ground motion. The H/V spectral ratio in some stations shows a clear peak and at the others might show two or multiple peaks which represents the geologically complex areas. Calculated dominant frequency changes between 0.4 and 2 Hz. These low values indicate the existence of basement at greater depths and large thickness of sediments on basement (Parolai et al., 2002).
Site modelling
The results of H/V spectral ratio are affected by the local geologic structure. Based on this assumption, we can produce theoretical H/V curve with knowledge of the geologic structure in the area. One-dimensional modelling is a suitable method to evaluation of the site response due to the local geology which requires geotechnical and geophysical data. In the one-dimensional modelling, it is assumed that all boundaries are horizontal in the infinite media and the response of a soil deposit is predominantly caused by SH-wave propagating vertically from the underlying bedrock. In this present study, one-dimensional modelling was carried out using Deepsoil software. Due to the very small deformations in soils by microtremor and producing a low levels of strain, we applied the linear method to evaluate the ground seismic response during mild earthquake shakes. In this software, homogeneous and isotropic soil profile is considered as N horizontal layers. The site response (transfer function) is evaluated by parameters such as layer thickness (m), density (ρ), shear modulus (G), and damping factor of layers (β), which are obtained from available geotechnical boreholes.
Usually, engineering bedrock is considered for the purpose of numerical modelling. According to TC4 (1994), the seismic bedrock was defined as a layer with a shear wave velocity of more than 600 m/s. Shima (1978) recommended that the upper crust with a shear wave velocity of about 3000 m/s, is adopted as bedrock when large scale structures with longer vibration period are being considered. International building code (ICC2000) has defined the seismic bedrock by a shear wave velocity of more than 760 m/s. According to Unified Building Code (UBC97), bedrock is defined into two groups: A (very hard rock with a speed of more than 1500 m/s) and B (rock with a speed of 760 to 1500 m/s). Therefore, the proposed values of the shear wave velocity are different for considering seismic bedrock. In order to consider the uncertainty of the shear wave velocity in the present one-dimensional modelling, three scenarios for the bedrock, were performed with three speeds of 760 m/s (based on engineering bedrock), 1300 m/s (bedrock geology), and 2500 m/s (corresponding to tuff-andesite of the Karaj basement) at different depths, according to the regional geological map. Then, three scenarios of the numerical modelling were compared with microtremor transfer function.
1. One-dimensional modelling at the Karaj site using downhole data for engineering bedrock (> 760 m/s)
In order to access the shear wave velocity profile for 1-D modelling, downhole data from 21 boreholes were used in nine sites which were available up to the maximum depth of 50 meters at 20 boreholes and 96 meters at A09 borehole. Low thickness of alluvium (about 17-85 meters) was considered with engineering bedrock (>760 m/s) for numerical modelling. The results represent higher frequency range compared with the microtremor data. In some previous studies where engineering bedrock had been defined by shear wave velocity values between 700 to 800 m/s in 1-D modelling, the results of the theoretical model is incompatible with experimental results. Thus, it seems that it is not suitable to consider the engineering bedrock in 1-D modelling.
2. One-dimensional modelling at Karaj site using microtremor array data for geology bedrock (> 1300 m/s)
By considering the seismic bedrock (>760 m/s) at depths of 17 to 85 meters and calculating the one-dimensional transfer function, the peaks in higher frequency compared with the experimental method is observed. According to reliability of experimental H/V results which has been proved by researchers around the world (Haghshenas et al., 2008), the difference between the transfer function results in experimental and theoretical methods indicates that two variables of shear wave velocity or depth of bedrock and alluvium thickness have not been properly modeled. It seems that in order to get better results, it’s necessary to analysis by considering the geology bedrock at greater depth. Tchalenko, et al., (1974) considered lower part of Plio-Quaternary sediments of Hezardareh Formation and Miocene marl-limestone of Upper Red Formation as the bedrock in the Karaj plain. Shafiee and Azadi (2006) computed shear wave velocity characteristics of these geological units throughout Tehran city. Therefore, a mean velocity of 1300 m/s was considered for the geology bedrock during the modelling.
In order to access the shear wave velocity profiles at greater depths, microtremor array stations were designed by seven seismometer with 100 m radius at A09 (site 8) borehole. As it can bee seen, a clear contrast at a depth of about 230 m is observed. Therefore, the modelling was carried out by taking 230 m alluvial thickness on geology bedrock according to lithology of the region. The result of this modelling has shown a peak at frequency range of 0.87 Hz that is compatible with the microtremor peaks at this site. In other site this modelling was performed using array and downhole data. The results indicated that the first effective contrast occurs at depth of 200 to 300 meters.
3. One-dimensional modelling at the Karaj site for basement (> 2500 m/s)
Transfer functions obtained from the previous model, did not cover low frequency peaks in the experimental methods. Therefore, the presence of other low-frequency peaks is either due to the geometry of the sedimentary basin or deep contrast. It seems that due to the geology of the region, tuff- andesite of the Karaj Formation as basement plays an important role in the creation of low-frequency peaks. Therefore, to obtain a better model, deep contrast was considered about 2 kilometers due to differences in the type of bedrock with a shear wave velocity of 2500 m/s. For this purpose, according to the properties of the Upper Red Formation, an average constant speed of 1400 (m/s) was considered in modelling and by changing the thickness of this layer, the modelling was continued in a trial and error manner until the numerical model is consistent with microtremor peaks. The modelling results in nine site indicate that there is basement at the depth of 2000 to 2250 meters.
Two-dimensional model of the Karaj site
Using the one-dimensional analysis and evaluation of the geological map of the area, two dimensional geological structure was rebuilt in studied profiles. Green and gray tuffs and igneous rocks of Karaj Formation outcrops in north of Karaj and constitute the Alborz Mountains. This Mountains eroded by the action of rivers and were deposited in the form of large alluvial fans. Coarse sandy sediments were deposited near mountains wherein energies of rivers and streams were extremely high (site 1 to 4). Furthermore, fine-grained sediments were deposited at far distances by decreasing in the energy of streams (site 5 to 9). Berberian et al (1985) divided B Formation in two parts: heterogeneous deposits of sand, gravel, rock and clay in north of Tehran (Qbn) and silts and clays of Kahrizak (Qbs) in south of Tehran. According to 1-D modelling, thickness of this layer is about 200 to 300 m which has been deposited on geology bedrock. As mentioned before, lower parts of Hezardareh Formation at the north of Karaj and Upper red Formation in the south west of Karaj are considered as geology bedrock. Upper Red Formation was deposited with unconformity on tuff-andesite of the Karaj basement at depths of 2000 to 2250 meters.
Conclusions
The use of empirical methods based on microtremor is an efficient way to estimate the site effects in Karaj city, although the use of earthquake records could provide better evidence of the depth and geometry of basement. One-dimensional modelling of shear wave velocity profiles obtained from downhole data and considering the engineering bedrock (> 760 m/s) at depths of 17 to 85 meters, is not a good way to estimate the dominant frequency of alluvium. By considering the greater depth of alluvium and using shear wave velocity profiles obtained from microtremor array, 1-D modelling was carried out for geology bedrock (1300 m/s). Therefore, peak frequency in transfer function at the range of 0.87 Hz has been associated with effective contrast at depths of 200 to 300 meters. It seems that Karaj basement (> 2500 m/s) with about 2 kilometers depth plays an important role in the production of low-frequency peaks in transfer function.
 
K Saberchenari, H Salmani, Ms Mirabedini,
Volume 11, Issue 4 (5-2018)
Abstract

Introduction
Landslides are natural events that one or more factors can effect in its occurrence that each of them plays a special role in this field. The hazard assessments of this phenomenon are a complicated problem due to the interference of the effective factors in its occurrence. The uncertainty that is due to ambiguous conditions of geology characteristics, hydrology, tectonics, land cover, rain, erosion, temperature fluctuations in the slope instability demonstrate the benefit of accurate methods in the study of slope instability. Since the prediction of the landslide occurrence is out of the power of current knowledge, identifying sensitive areas to landslide and ranking it can protect us from landslide dangers. According to preliminary estimates, annually 140 million dollar financial damages inflict by landslides over the country, while the loss of unrecoverable natural resources is not counted. In general, the ultimate goal of studying landslides can be found the ways that to reduce damages caused by them. Therefore, it is necessary to prepare the landslide hazard map.
The main goal of this research is landslide hazard zonation of Ziarat watershed using Dempster-Shafer. For this purpose, 13 modeling approach (using all factors and eliminating of individual factors) to prepare the hazard maps have used. Ultimately, the accuracy of the model has been evaluated using receiver operating characteristic (ROC) curves. The study area is one of the most prone areas to the landslide in the Golestan region. Sensitive lithology units, high diversity of topography and land-use changes have increased landslide susceptibility in this area. Therefore, investigation of effective factors in landslide occurrence and providing zonation maps to take management action in this area is necessary.
Material and methods
The study area is located in northern Iran, Golestan province. The Ziyarat watershed with an area of about 7800 hectares lies between longitudes 54º 10ʹ 13ʺE and 54º 23ʹ 55ʺE, and latitudes of 36º 36ʹ 58ʺN and 36º 46ʹ 11ʺN. At first, extensive field observations of the study area and aerial photos in 1:25000 scales have been used. So, a total of 50 sliding points are recognized and inventory map is produced (dependent variables). Then, 70% of total points (35 points) have considered for hazard zonation maps and 30% (15 points) for model validation.
In this research, twelve factors affecting (independent variables) landslide occurrence to provide hazard maps were applied. These factors include land-use, soil texture, geology, rainfall, slope, aspect, altitude, distance from faults, roads and rivers, stream power index (SPI) and plan curvature (CP). These factors can be divided into three broad categories which are topographical, geological and environmental conditioning parameters. The maps of these 12 factors have been produced using basis maps (DEM and Geology maps) in GIS software. The amount of Landslide density in each factor class have calculated from a combination of independent and dependent variables, and rating of classes have done based on Dempster-Shafer equations. Finally, the Landslide hazard zoning map has drawn from the summation of weighting maps in Arc GIS with 13 approaches. In this map, Value of each pixel is calculated by summing weight of all factors in that pixel. The pixel values are categorized based on natural breaks classifier into very low, low, medium, high and very high hazard zones. Then, an accuracy of zoning map has been evaluated by ROC.
Results and discussion
The result of effecting factors on landslide classification shows that Mobarak formation, forest and agriculture land use, areas with low distance from road and rivers, low altitudes, rainfall buffer of 550-650 mm, northwest aspect, clay-loam soil texture, areas with high stream power index, high slope amplitude and area with fault density lower than 2 km/km2 contain the most susceptibility to landslide. The result of model validation using ROC demonstrates that with eliminating lithology factor Dempster-Shafer model with 92.9% accuracy is located in the great class. Also, the model accuracy shows that with eliminating rain and altitude factors the model accuracy is decreased to 73.8% and 80.4%, respectively. So, these two factors were identified as the most effective factors in the occurrence of the landslide in the studied area. Based on the landslide zoning hazard map of the Ziarat watershed and landslide points (15 points) that are considered for model validation the 20, 40, 26.67, 13.33 and zero percent of landslides is situated in the very high, high, moderate, low and very low hazard classes.
Conclusion
In this research, susceptible areas to landslide in the Ziarat watershed have been mapped with the Dempster-Shafer model. For this purpose, 13 modeling approach to prepare the hazard maps have been used. The following conclusions are obtained from this study.
- The rain and altitude factors were identified as the most effective factors in the occurrence of landslide in the Ziarat watershed.
- Based on the landslide zoning hazard map of the Ziarat watershed 60 percent of landslides is situated in the very high to high hazard classes.
- The produced landslide hazard map is useful for planners and engineers to reorganize the areas which are susceptible for landslide hazard, and offer appropriate methods for hazard reduction and management. ./files/site1/files/0Extended_Abstract4.pdf 
Sm Fatemiaghda, H Shahnazari, H Karami, M Talkhablou,
Volume 11, Issue 4 (5-2018)
Abstract

Carbonate soils are different from silicate soils respect to their origination and engineering behavior. Particles of these soils are mainly residual or debris of sea animals or plants with large amount of calcium carbonate. They also may be chemical sedimentation of calcium carbonate over other soil particles in specific region of seas and oceans. The most important characteristic of these soils is the crushability of their aggregates under loading which is mainly due their shape and also small voids inside of them.  Crushability and subsequent volume changes in carbonate soils have caused many engineering problems in some geotechnical structures such as ...../files/site1/files/0Extended_Abstract5.pdf
, , , ,
Volume 12, Issue 1 (8-2018)
Abstract

 IExtended Abstract
 Introduction
The Iranian plateau is situated in the Alpine-Himalayan orogeny between the Eurasian plate in the north and the Arabian plate in the south. It is being shortened by the northward movement of the Arabian plate, which causes the most parts of Iran to be active and dynamic in terms of tectonic movements. The recent tectonic activity in the southern edge of central Alborz causes both development and deformation of the tectonically active landforms. Seismic records indicate a high frequency of earthquakes of relatively small magnitude (<4) and infrequent large earthquakes (>5.1) in the Alborz. The studied area is located in the southern central Alborz and at the edge of northwestern central Iran between seismic faults of Ipak (with approximately E-W trend) and Avaj (with NW-SE trend) that includes significant earthquakes. Generally, the dominant tectonic structures of the study area involve thrust faults. The Ipak fault is one of the major fault systems in the area, located about 120 km west of Tehran, and caused the 1962 Buin Zahra earthquake of Ms 7.2 (Mw 7.0). The earthquake was associated with 95 km surface rupture along the Ipak reverse fault with average throw of 140 cm and left-lateral displacement of 60 cm. This investigation has evaluated the active tectonics and the acceleration zoning of the region in order to analyze and measure the recent tectonic activities.
Material and methods
To assess the acceleration zoning of this region, seismic data, Kijko software, PSHA software and reduction equations were used; consequently, minimum and maximum acceleration for useful life of 75-year and 475-year building were estimated. In order to assess the relative tectonic activity through the study area, sub-basins and stream network were extracted by using Arc Hydro Tools software based on the DEM and in turn, 134 sub-basins have been resulted. The six geomorphologic indices were used as follow: Stream length–gradient index (SL), mountain front Sinuosity (Smf), Ratio of valley floor width to valley height (Vf), Asymmetric factor (Af), Hypsometric integral (Hi) and drainage Basin shape (Bs). Eventually, after calculating the relative tectonic activity index (Iat), the studied area was classified into four tectonic activity classes in ArcGIS10.1 as very high, high, medium and low.
Stream Length–Gradient Index (SL): The SL index indicates an equation between erosive processing as streams and rivers flow and active tectonics. The SL is defined by Eq. (1) 
SL= (∆H/∆Lr) Lsc                                        (1)
where ΔH is change in altitude, ΔLr is the length of a reach, and Lsc is the horizontal length from the watershed divide to midpoint of the reach. The SL index can be used to evaluate relative tectonic activity.  The quantities of the SL index were computed along the streams for all sub-basins.
Index of Mountain Front Sinuosity (Smf):  Index of mountain front sinuosity is defined by Equation (2). 
Smf = Lmf ⁄ Ls                                             (2)
where Lmf is the length of the mountain front along the foot of the mountain in which a change in slope from the mountain to the piedmont occurs; and Ls is the straight line length of the mountain front. Smf represents a balance between erosive processes tending to erode a mountain front, making it more sinuous through streams that cut laterally and into the front and active vertical tectonics that tends to produce straight mountain fronts, often coincidental with active faults or folds.
Ratio of Valley Floor Width to Valley Height (Vf): Vf is defined as the ratio of the width of the valley floor to its average height and is computed by Equation (3).
Vf = Vfw/ [(Ald-Asc) + (Ard-Asc) /2)]                            (3)
where Vfw is the width of the valley floor, and Ald, Ard, and Asc are the altitudes of the left and right divides (looking downstream) and the stream channel, respectively. A significant relationship exists between the rate of mountain front activity and the Vf index. Consequently, the high Vf values conform to low uplift rates (Keller and Pinter 2002). The shape of a valley can also represent the Vf amount and uplift rate. Therefore, U-shaped valleys accommodate low Vf and high uplift.
Asymmetric Factor (Af): The asymmetric factor (Af) is a way to evaluate the existence of tectonic tilting at the scale of a drainage basin. The method may be applied over a relatively large area. Af is defined by Equation (4).
Af= 100(Ar/At)                                                   (4)
where Ar is the area of the basin to the right (facing downstream) of the trunk stream and At is the total area of the drainage basin. If the value of this factor is close to 50, the basin has a stable condition with little or tilting; while values above or below 50 may result from basin tilting, resulting from tectonic activity or other geological conditions such as lithological structure.
Hypsometric integral (Hi): The hypsometric integral is an index that describes the distribution of the elevation of a given area or a landscape. The Hi is independent of basin area. This index is defined as the area below the hypsometric curve and thus expresses the volume of a basin that has not been eroded. A simple equation that may be used to calculate the index is defined by Equation (5).
Hi = (average elevation - min. elev.) / (max. elev. - min. elev.)  (5)
Then Hi values were grouped into three classes with respect to the convexity or concavity of the hypsometric curve: Class 1 with convex hypsometric curves (Hi≥0.5); Class 3 with concave hypsometric curves (Hi<0.4); and Class 2 with concave–convex hypsometric curves (0.4≤Hi<0.5).
Index of Drainage Basin Shape (Bs): Horizontal projection of basin shape may be described by the elongation ratio, Bs, expressed by Eqation (6):
Bs = Bl/Bw                                        (6)
where Bl is the length of the basin measured from the headwaters to the mouth, and Bw is the width of the basin measured at its widest point. High values of Bs are associated with elongated basins, generally related to relatively higher tectonic activity. Low values of Bs indicate a more circular-shaped basin, generally associated with low tectonic activity.
Evaluation of Relative Tectonic Activity (Iat): The average of the six measured geomorphic indices (Iat) was used to evaluate the distribution of relative tectonic activity in the study area. The values of the index were divided into four classes to define the degree of active tectonics.
Results and discussions
Results of probabilistic seismic hazard analysis have shown that the minimum and the maximum acceleration for useful life of 75-year building is estimated as 0.33g and 0.45g and for 475-year one are 0.46g and 0.60g, respectively. These values are indicative of high risk in the studied area. Acquired values from geomorphologic indices and also acceleration zoning of the realm are indicative of high recent tectonic activities near Ipak, Hasanabad, Soltaniyeh and Avaj faults; they are extremely concordant with the obtained evidences and geomorphologic characteristics of the field samples. In this study, considering the diversity of the morphotectonic features, six morphometric indices relevant to the river channels, drainage basins, and mountain fronts were computed for every catchment, and consequently, a single index (Iat) was calculated from the these indices for each of 134 subbasins to define the degree of active tectonics. Finally, the Index of the Active Tectonic (Iat) was calculated through which the study area is classified into four tectonic activity classes, from very high to low; 1—very high (1.0≤Iat<1.5); 2—high (1.5≤Iat<2.0); 3—moderate (2.0≤Iat<2.5); and 4—low (2.5≤Iat). The distribution of the four classes of Iat has been presented in a well classified map. The indices have represented a quantitative approach to differential geomorphic analysis related to erosion and depositional processes which include the river channel and valley morphology as well as tectonically derived features, such as fault scarps. We also evaluated the outputs of the morphometric analyses based on field-based geomorphological observations. Thus, these results are proved to be extremely beneficial to evaluate relative rates of active tectonics of this region.
The values of Af show widespread drainage basin asymmetry related to tectonic tilting, particularly associated with Ipak fault. The values of Smf suggest that mountain fronts are tectonically active, and the values of Vf show that some valleys are narrow and deep, suggesting a high rate of incision. The parts with class 1 and 2 of the relative tectonic activity are located along the main faults of the region, such as Soltaniyeh, Avaj, Hasanabad and Ipak faults and show high correlation with observed landforms during the field investigations such as the direct mountain fronts, fault gorges, fault scarps, and deep v-shaped valleys. Besides, the high amount of the relative active tectonic index shows a good consistency with the recent tectonic activity, namely tilting and deformation of the Quaternary units, which is the indicative of the effect of compressive stresses, affecting the region.
Conclusion
In this study, according to the current tectonic activity using the Iat index, it was found that the study region represents a high current tectonic activity along the fault zones. The values of SL, Hi, and Bs were found to be high along Soltaniyeh, Avaj, Hasanabad and Ipak faults segments.
According to the earthquakes and probabilistic seismic hazard analysis in the study area, it can be said is worthy to note that some basins which are located among active faults, are seismically dangerous.  However, they show low relative active tectonic index (Iat)../files/site1/files/121/AleeiAbstract(1).pdf
Hamed Rajabzade, Hamid Mehrnahad,
Volume 12, Issue 1 (8-2018)
Abstract

Introduction
The effect of surface geology on seismic movement is known and acceptable and this effects can consider important factor in movement resulting from earthquake. studying intensity and dispersal of recent decade earthquake destruction indicated importance of construction effects and surface geology conditions more than ever. From view point of  engineering, earthquake importance is in light of effects that these earthquakes is created in construct such as dams, powerhouses, bridges, residential areas and industrial installations that in most cases, this constructs are building not only on rack mass surface but on earth surface, e.g . alluvial layers placed on bed stone. The effect of soil layers on earthquake waves is result of complex processes that this effect can exist as dynamic support under stability soil conditions that is called as intensification from it.
Material and methods
There are multiple methods in order to determining effect of construct and affecting in on earth potent movement features, that among them are covered less-cost numeral methods and more site output and beacuse of reason are using from these methods in order to analyzing respond to earthquake vibrations. In this paper try to using data resulting from drining 5 boreholes on Tabas city construction are studying the effect of and also comparing numeral methods of analyzing building such as equivalent linear and non-linear analysis for earthquake return periods of 75, 475, 2475 using NERA and EERA softwares.
Results
Taken together reinforcement rate and also maximum velocity in earth surface can explain that Dehshak region and Tabas center areas include more intensification conditions. On the other hand, south zone of Sarasyab sector and then Imamzade area include higher solidity and least intensification. Based on done studies are suggested to guided urban development programm more toward Hossein – ebne - Mousakazem Emamzadeh in order to exert from more suitable buildings. Also, regarding to EERA high-leval evalution and non-linear soil bahavior for earthquake with 2475 high return period is used from NERA software for analyzing construction effect to obtain maxium more realistic surface velocity ../files/site1/files/121/Rajabzadehi_Abstract(1).pdf
Latif Samadi,
Volume 12, Issue 1 (8-2018)
Abstract

Extended Abstract
Summary
In this research seismic, electrical sounding and geoelectrical tomography methods are used to assess the distribution of strength of foundations, the earth's natural period (T0), layering conditions and petrophysical characteristics of the underlying soil. The bridge is built on alluvial sediments of the Haraz river in Mazandaran province. The bridge consists of two lateral and three intermediate bases. The Haraz river passes through the eastern and adjacent intermediate base. This research indicates that: 1- based on seismic studies, the average shear wave velocity to a depth of 30 meters at the eastern base of the bridge is significantly more than that of the western base. Therefore, the stiffness and loading capability in both bases of the bridge are different, 2- geoelectrical sounding shows that the eastern side of the bridge, most likely composed of silt and clay and there is a possibility of subsidence at the east side of the bridge, 3- electrical resistivity tomography maps in E-W section is asymmetric and shows lateral changes of soil structures along bridge. In other words, distribution of stress on eastern and middle basis of the bridge with considering mentioned reasons is stirred with probably subsidence in the last few decades utilization and appearing of defects in the body of the bridge.
 Introduction
Many factors such as floods, earthquakes, hurricanes, tsunamis, improper exploitation conditions and other factors have threatened historic buildings and urban infrastructure. Iran is one of the active seismic areas of the world and unfortunately many of the historical monuments have been damaged or completely destroyed during different earthquakes. Bam citadel, the largest mud structure in the world, is an example of a cultural heritage which was completely destroyed in deadly earthquake of January 2003. In many large cities of the world such as Tehran, more than hundred bridges have been constructed to solve the traffic jam. Insecure and improper utilization may threat the strength of bridges and decrease their longevity. Today, the soil behavior under loading cycles and dynamic condition is very important in urban active seismic areas. In most cases the physical properties of soil are obtained by laboratory tests and in situ methods including refraction seismic method, reflection seismic method, SASW method, well logging, cross-hole and also geo-electrical and other geophysical methods. The relation between seismic wave velocities and stress in soils and mineral materials are to the interest of seismologist and seismic specialists. Today in exploration seismic the relation between stress and velocity of seismic waves can be used in AVO analysis and also to predicting and monitoring the hydrocarbon and thermal fields of reservoirs in 4D exploration seismic. There are many researches in this subject and established some experimental relationships between stress and elastic modulus of rocks with wave velocities. The aim of this research was to identify the seismic characteristics and geological conditions of soil beneath foundations of bridge in north of Iran mainly for investigating possibilities for strengthening the city historical oldest bridge. In this study we used simultaneously refraction seismic, electrical sounding and geoelectrical tomography methods. Seismic method used to estimate the stiffness of soil, average shear wave velocity of upper 30 m and determination of site classes. Electrical sounding and geoelectrical tomography have used to identify subsurface geology, differentiation and identifying electrical resistivity of soil profile and distribution of electrical resistivity in tomography section for understanding distribution of stress in soil. The bridge is built on alluvial sediments of the Haraz River. Mazandaran-Khazar fault is located 7 km south of study area in east-west direction. The bridge consists of two lateral and three intermediate bases. The Haraz River passes through the eastern and adjacent intermediate base.
Field surveying
Several seismic profiles surveyed in this are and five of them used in current research. Linear array are employed with P-wave and S-wave. Distance between geophones is 2 m respectively. The lengths of profiles were different due to space constrains. Length of profiles considering offsets was up to 86 m. Impulse impact is transmitted to the soil by sledge hammer equipped with a trigger element. For P- wave profiles, vertical hit on steel plate and for S-eave profiles, horizontal hit on special I-beam steel were used. In order to improve the signal to noise ratio (S/N), an average of ten hammer blows were stacked for each record. Length of records is one second with sampling interval one millisecond. The first arrival times of refraction seismic data were interpreted with considering characteristic of first arrivals in layered condition and continuous medium. The results of average shear wave velocities to the depth of 30 m in the five profiles (S1 to S5) were 774 m/s, 629 m/s, 540 m/s, 581m/s, and 563 m/s consequently.
The average shear wave velocity in the upper 30 m was globally adopted after the National Earthquake Hazard Reduction Program (NEHPR) classification in the USA. Profile S1 is located near the western base of the bridge, profile S3 near the eastern base of the bridge, profiles S2 and S6 at the middle of bridge and profile S5 about 200 m of eastern base. The average sheer wave velocity in the upper 30 m of soil in western base (Vs30=774) is more than eastern base (Vs30=540). According to the average shear wave velocities, the type of underlying soil in western base falls to B class  (760<<1500) and in eastern base falls to C class (360<<760). It means that the natural periods of soil and reflection coefficient of bridge in both sides are different.
Vertical electrical sounding is another geophysical method that used to separate the layers, thicknesses and electrical resistivities of underlying sediments at the eastern base of the bridge. The resistivity measurements carried out by injecting electrical current into the ground through the two current electrodes, and measuring the resulting voltage difference at two potential electrodes. We used symmetrical four electrode schlumberger array. The type of experimental sounding curve is AH. It means that soil profile under the eastern base of the bridge consists of 4 layers with interbedded low resistivity layer. Interpretation of geoelectrical curve shows that the first layer has a thickness of 4 m with resistivity of 800 ohm-m. Surface evidence indicates that this layer is composition of sand, gravel and conglomerate. The second layer has a thickness of 16 m with the resistivity of 334 ohm-m. This layer most probably is composition of saturated sand and conglomerate. The third layer has a thickness of 14 m with resistivity of 43 ohm-m. Low electrical resistivity shows that the grain size is fine and matches with silt and clay. The last layer as a basement starts from the depth of 34 m with electrical resistivity of more than 1000 ohm-m.
Geoelectrical tomography is another method that used to determine the lateral changes of electrical resistivity and identifying the pattern of distribution of stress in underlying soil at the middle of the bridge. Geoelectrical tomography profiles were in east-west direction. The distance between measuring points was 1 m. Electrical resistivity of sedimentary rocks and soils generally depends on porosity, mineral type, depth, stress, moisture content, structure and texture and temperature. Variation of electrical resistivity verses depth shows that the distribution of electrical resistivity of the subsurface material is not uniform and increase with depth. It also shows that the distribution of electrical resistivity in soil under the base is asymmetric in E-W direction.
Conclusions and result
Integrated geophysical studies were conducted in three stages with three different methods. The following conclusions are extracted based on study: According to seismic data the average shear wave velocity at the western side of the bridge (m/s, m/s) is more than the East (m/s, m/s) and middle of the bridge (m/s, m/s). The high velocity of S waves in the western side of the bridge shows that the stiffness of soil materials in the west side of the bridge is more than of the east side. According to NEHPR site classes, the type of underlying soil in western base falls to B class and in eastern base falls to C class. It means that the natural periods of soil and reflection coefficient of bridge in both sides are different. In other word the response of bridge respect to vibration of soil generating by traffic in both sides is different. The Haraz River passes through the eastern and adjacent intermediate base about 4 m under ground level of the middle bases. Geoelectrical sounding show that the eastern side of the bridge most likely composed of silt and clay. Therefore there is a possibility of subsidence at the east side of the bridge. This bridge connects the eastern side of the river to the western side and asphalted road passes through western base and intermediate base. It means that the vehicle traffics continuously compacts underlying soil in western base respect to eastern base. Electrical resistivity tomography map in E-W section is asymmetric and shows lateral changes of soil structures along bridge. In other words distribution of stress on eastern and middle basis of the bridge with considering mentioned reasons is stirred with probably subsidence in the last few decades of utilization and generation of lateral stress due to truck traffic impacts in eastern bases and underlying soil. The change of lateral or transverse stress changes the porosity of soil profile and change of porosity changes the electrical resistivity. Existing cracks in the beam of studied bridge agrees with the available results of research.
 
Ata Shakeri, Fahimeh Yousefi,
Volume 12, Issue 1 (8-2018)
Abstract

Extended Abstract
Introduction
The presence of potentially toxic elements in the environment and especially in soil has been one of the greatest concerns due to their health implications. Potentially toxic elements from anthropogenic sources tend to be more mobile than those from lithogenic or pedogenic sources.  Generally, the distribution of potentially toxic elements is influenced by the nature of parent materials, climatic conditions, and their relative mobility depending on soil parameters, such as mineralogy, texture and class of soil. In the inhabited, and industrial areas, vicinity to the un-engineered landfills, excess accumulation of toxic elements in surface soils can directly threaten wellbeing of exposed inhabitants via ingestion, inhalation and dermal contact routes. A few studies conducted on risk assessment of potentially toxic elements in soils of Kermanshah province, west of Iran. Soil in the study area is susceptible to contamination by anthropogenic activities in the form of industrial wastewater, agricultural activities, solid waste, runoff, atmospheric deposition and especially un-engineered landfills. The presence of toxic elements in soil around of un-engineered landfills without proper consideration to the environmental protection measures, will certainly lead to a significant environmental hazard in Kermanshah province. Therefore, the main purposes of this study are to evaluate the contamination levels, health risk assessment, and source identification of As, Cd, Cr, Cu, Ni, Pb and Zn in the Gasre Shirin, Gilane Gharb, Paveh, Javanrood, Eslamshahr, Ravansar, Kermanshah and Sanghar un-engineered landfills.
 
Material and methods
     A total of 30 topsoil samples were collected (0-20 cm depth) from the eight un-engineered landfills of the Kermanshah province. In order to achieve a representative sample, composite samples were prepared by mixing the four subsamples taken at each corners of 2×2 m square cell because composite sampling yields homogenized samples for analyses. The subsamples were mixed and a final sample of 1 kg was taken by repeated coning and quartering. To determine background concentration of heavy metals, eight soil samples were collected from areas far from known sources of contamination (40-60 cm depth).
The collected samples were immediately stored in polyethylene bags and air-dried in the laboratory at room temperature. Then, samples passed through a 2mm stainless steel sieve. The <2mm fraction was ground in an agate mortar and pestle and passed through a 63 micron sieve. In order to determine the concentration of As, Cd, Cr, Cu, Ni, Pb and Zn complete dissolution of soil samples (approximately 1 g of each) was carried out using a mixture of HF, HNO3, HClO4 and H2O2 in a Teflon beaker on sand bath at atmospheric pressure. The concentrations of the selected elements were measured by an accredited commercial laboratory (Zar Azma Laboratory, Iran) using ICP-MS methods. Data quality was ensured through the use of internal duplicates, blanks, and HRM. The precision and accuracy of measurements are 95% and +/-5% respectively.
The assessment of soil contamination was carried out using geochemical indices including contamination factor (CF), modified degree of contamination (mCd) and enrichment factor (EF). The methodology used for the health risk assessment was based on the guidelines and Exposure Factors Handbook of US Environmental Protection Agency. The average daily doses (ADDs) of heavy metals received through ingestion, inhalation, and dermal contact for both adults and children were calculated. In this study, hazard quotient (HQ), hazard index (HI) and carcinogenic risk (RI) methods were used to estimate non-carcinogenic and carcinogenic effects of heavy metals. The HQ was calculated by subdividing ADD of a heavy metal to its reference dose (RfD) for the same exposure pathway(s). If the ADD exceeds the RfD, HQ>1, it is likely that there will be adverse health effects, whereas if the ADD is less than the RfD, HQ<1, it is considered that there will be no adverse health effects. A hazard index (HI), the sum of HQs, which means the total risk of non- carcinogenic element via three exposure pathways for single element of <1 indicates no adverse health effects, while HI values >1 show possible adverse health effects. Carcinogenic risk is regarded as the probability of an individual developing any type of cancer in the whole life time due to exposure to carcinogenic hazards and was calculated for As and Cd as follows:
                                                                   (1)
The value of SF represents the probability of developing cancer per unit exposure level of mg/kg day. The acceptable risk range for carcinogens is set to 10-6 to by the USEPA, so that RI values below 10-6 do not require further action, while risks greater than 10-4 are considered to be of concern and require additional action to reduce the exposure and resulting risk.
Results and discussion
The soil pH ranges from 7.01 to 8.06, with an average value of 7.51 suggesting neutral conditions. Organic carbon (OC) contents of soil samples ranged from 0.06% to 4.91% (average 1.59%). In this study, based on the USDA textural triangle the main soil textures are loamy, clay loam and sandy loam, respectively.
The average abundance order of selected elements content is: Zn>Ni>Pb>Cr>Cu>As>Cd. Comparison of mean concentration of the potentially toxic elements in the soil samples with mean worldwide values reveals higher Zn, Pb and Ni contents in this area.
The results of contamination factor indicate very high contamination for Cd, Cu, Pb and Zn. Modified Degree of Contamination (mCd) calculated based on background values proves very high degrees of contamination for selected trace elements in Gasre Shirin and Eslamshahr landfills soil samples The results of enrichment factor evaluation similarity to contamination factor indicate that Cd, Cr, Pb, Cu and Zn have more influence from anthropogenic sources. The maximum EF of Pb, Zn and Cd and Cu is 346.7,124 and 51.9 respectively, which means very high enrichment in Ghasre Shirin landfill soil samples.
Exposure doses of 7 heavy metals in soil samples of un-enggenerd landfills for children and adults were calculated. The total exposure HQs calculated based on adults from ingestion, dermal contact, and inhalation for Cd, Cu, Ni, Zn, As and Pb was less than 1(except Ghasreshirin landfill). The hazard quotient values based on the adult risk for Cr were greater than 1.0. The results show that HQ for Pb and As in children by dermal and ingestion pathway is exceeded 1.0 in soil samples of Paveh, Javanrood, Ravansar, Kermanshah and Sangher landfills and Ghasreshirin and Eslamshahr landfills, respectively.
Conclusion
The concentration, pollution level, potential sources and health risk of potentially toxic elements in eight landfills top soil of Kermanshah province were investigated in this study. The following conclusions were drawn from this research.
- Compared with the background values of As, Cd, Cr, Cu, Ni, Pb and Zn in soils of Kermanshah Province, landfills soil have elevated metal concentrations as a whole.
- According to high contamination level and health risk of some studied potentially toxic elements, and also due to the proximity of contamination sources to residential district of the study area, more attention should be paid to manage and reduce contamination.
- These results provide basic information of toxic elements pollution control and environment management in the area../files/site1/files/121/Shakerii_Abstract.pdf
Hadi Nayyeri, Mohammadreza Karami,
Volume 12, Issue 1 (8-2018)
Abstract

Introduction
The prediction of landslide occurrence in a region is very important in reducing the risks and damages caused by this.landslide as a natural disaster in Iran caused a lot of life and financial losses to Iran annually. According to the National Committee on Natural Disaster Reduction of the Ministry of the Interior in 1994, the share of annual damage caused by mass movements in Iran is estimated at 500 billion rials. In the meantime Kurdistan province is the third province in terms of landslide phenomenon after Mazandaran and Golestan. If considering the area is at a higher level. The city of Bijar in this province has a high potential for a wide range of landslides with a combination of mainly mountain topographical factors, lithologic conditions and positioning between two major faults in the region. In this research, using quantitative methods and models on the quantitative  factors of this phenomenon based on the level of information given by past mass movements and influential factors, focusing on artificial neural network method, susceptibility zones were determined by determining the possible risk level.
Knowing such natural events requires proper management of the risks posed by them. On the other hand, artificial neural network as a quantitative model is capable of learning, generalization and decision making, and less need to analyze the accuracy of data in comparison to statistical methods. Map of the susceptibility of the areas to the landslide is an important tool for landuse planning. However, there are many issues in the formation of this phenomenon, which, due to the complexity of the natural processes arising from the relationship between the outcome (dependent variable) and the factors (independent variables), puts into question the general zoning of such areas.
Methodology
Bijar is located in the northeastern part of Kurdistan province, along the longitude of   47 ' 29° to 47 ° 47' east, in latitude 35 ° 35 'to 35' 59 °north. In recent years, the development of the Geographic Information System (GIS) and spatial analysis techniques have improved the risk of indirect zoning. In this regard, artificial neural networks can cover a significant part of these needs.Implementing the neural network model requires learning data. Without learning data, it's virtually impossible to make neural networks. In this paper, learning data shows the occurrence of landslides which have geographical coordinates and were obtained from the Kurdistan Province Natural Resources Organization. In general, learning data in GIS and remote sensing can include data or raster, which in this paper is a point phenomenon and has 144 cases.  However, because of the large extent of the study area and the low number of them, as well as the lack of risk of any landslide zone (from low to very high), the points should be classified as well, and, in terms of numbers, Acceptance. Also, the number of points of relative value In terms of numbers, the conditions are the Normal and the same (that is, the appropriate geographical distribution and distribution in each class) would be more accurate; thus, to create a classifiable spectrum of the AHP Was used. It should be noted that all the maps were standardized in the format and format of the Raster in a matrix (698 rows in 897 columns) identical with a size of 30 * 30 meters. This means that each map has 626,106 pixels of varying value and somewhat similar. In addition, the AHP model was used to categorize the studied area from very desirable (hazardous) to very undesirable (very dangerous) areas. Also, 33 points were added to the learning data on different levels of the map derived from the AHP model. But in order to verify accurately the model, only landslide occurrences were considered.
In order to find out the factors of landslide in Bijar, a map of slope, Aspect, elevation, distance from the fault, distance from the road, distance from the river, Drainage density, lithology and land use using ArcGIS software were prepared and digitized.
After compiling and categorizing these variables, at first, each of the effective criteria in the field was divided into six sub-criteria (land suitability for landslide) from very desirable to very undesirable conditions. The present study utilizes the technique of multi-layer propspert neural networks using post-propagation algorithm (BP). In addition to correcting and editing the layers, the neural network model was implemented using the classification method and applying two types of functions (linear and sigmoid). Then, using the test-error method, the study of the magnitude of the error and the period of the repetition and the change in the number of hidden layers and weights, both functions were performed. Finally, the sigmoid function, which yielded a better result, was selected as the proposed and final function.Order to verify the (accuracy) of the map taken with the existing landslide zones, the final map of the neural network model was again transferred to the ArcGIS software. Finally, the available landscapes on the map resulted from the adaptive neural network model, which, by comparison, gave a percentage and amount Accuracy of each class was achieved.
Result
The input layer were calculated to six classes based on the desirability of mass movements. This decision approach reduces the complexity of the network and improves its performance.
For this purpose. The AHP method was used to define non-slip pixels and range classification.
To implement this method, 9 variables discussed, were scaled up to the most suitable and un suitable range. The final weight of these variables was obtained by using the Thomas saati pair comparison (Table 4), the study area was divided into five categories according to the map for land suitability for landslide hazard. From each class, the 20-pixel from AHP model was selected for network learning in a completely randomized manner. The proposed model is an artificial neural network of MLP multi-layered perceptron with levenberg-marquardt learning algorithm. An early stopping method was used to improve network optimization. Several hidden layers were tested to find the best results. It should be noted that in the structure of all networks, at least the optimal design with the middle one is used, but in their structural composition they are also used with mid-duplex networks. In this paper, the use of tow mid-layers showed better results.  In all Simulations have been made, the mean square error index, as a guide, indicates the network performance in learning the existing model. By changing the number of intermediate neurons and changing the weights as try and error, the most appropriate network model was obtained for the purpose. In this study, the structure of the network with 9 input layers, 2 hidden layers, 1500 repetitions in both functions was accepted as the final structure. The main structure of the neural network with two linear and sigmoid functions was prepared with acceptable error, and the study area was analyzed with a total area of ​​564 km2 with 9 input variables converted into raster data to 30 × 30 pixels. From 564 km2 based on the sigmoid function 61.17% and based on the linear function, 72.76% of the area is unsuitable and very unsuitable in the area where expose to high risk. In both networks, there were very few areas in both optimal and moderate classes (Figures 16 and 17), which indicate the high talent of the area for landslide as a threat. Then, ArcGIS software was used to evaluate the efficiency and accuracy of the model. For this purpose, the point of landslide and zoning maps were combined, compared and anlayzed. The results showed in the sigmoid function 75 items of Landslides were in a very unsuitable range, which included 61% of the total of region.
Conclusion
 In the linear function, approximately 69% of the landslides are in a very unsuitable range and the unsuitable results are about 57%, which results in the success of the model designed in the neural networks (MLP). In the end, the network with sigmoid function is negligibly better than the linear function network.The results show that Bijar and its functions are relatively prone to occurrence of landslides, so that nearly 60% of the city's area is a high risk area with a high risk and only 2% is a low-risk region. The hazardous areas are mainly located around the city of Bijar especially southern and southeast. These areas correspond to high altitudes and maximum fault density and lime lithology with marl (Qom Formation). The model can be very challenging, because of innovative nature of the research, that means need more detailed and comprehensive studies../files/site1/files/121/neiri_Abstract.pdf
Siamak Baharvand, Salman Soori, Jafar Rahnamarad, Maseoud Joudaki,
Volume 12, Issue 2 (10-2018)
Abstract

Introduction
Earth is a dynamic system. Change is one of its features. At its surface, there is almost no region that over the past few thousand years has not affected its neotectonic activities. In fact, it can be said that active neotectonic is changing the surface of the earth. Among geological methods for analyzing active tectonic movements, deciphering the geomorphology and morphotectonic nature play a very important role, because many geomorphic complications are sensitive to active tectonic movements and the geometric analysis of these complications provides evidence of the type, rate, and configuration of active tectonic deformations. Moreover, these geomorphic indices at a regional scale provide basic reconnaissance tool to identify tectonically active regions, their susceptibility to tectonic deformation, and level of tectonic activity.
In the presented study, tectonic activities and geological structural features of the Vark basin in Lorestan province, such as the discontinuities that may be detected on satellite imagery as lineaments, and in many cases control landslide occurrences, have been analyzed using the GIS and remote sensing.
Material and methods
Neotectonic investigation in the area: in order to analyze and to evaluate the tectonic movements in the Vark basin, considering the validity of geomorphic indices, longitudinal gradient (SL), river meanders (S), basin hypsometric curves (HC) and asymmetry factor (AF) have been used.  After calculating the desired indices, the tectonic activity of the area has been evaluated using the index of active tectonic (IAT).
Vark basin lineaments map derived from satellite images with proper resolution: using remote sensing techniques and visual interpretation of the OLI Landsat 8 satellite imagery, all fractures and lineaments of the region were identified and then by preparing the rose diagram, the trend of the lineaments of the area analyzed.
Landslide hazard zonation in the Vark basin: In this study, in addition to plotting landslide occurrence Points, eight other factors were also investigated. In order to provide a map of the factors affecting slip, the digital elevation model (DEM) in ENVI 4.8 and ArcGIS soft wares were used and the maps of slope, slope aspects, altitude classes, area geology, land use, topography and precipitation were prepared. Then, in order to zoning the landslide hazard, fuzzy logic method has been used. Fuzzy logic is based on the fuzzy layers and the fuzzy inference process.
Results and discussion
Analyzing the Neotectonic of the Area: as stated above, the relative active-Neotectonic (IRAT) index is derived from the interpolation of the morphotectonic indexes. In this case, after reviewing the morphotectonic indices of the study area and determining the activity rate of each indicator, the classification or prioritization of these activities were done. The results obtained from calculating the active tectonic index indicate that the study area with IAT is equal to one, has an active neotectonic.
Preparing the Lineation Maps of the Area: in this research, the aim of the data processing including satellite imagery and digital elevation model is identification and extraction of fractures and faults in the Vark basin. To this end, we can use the integration of the information layers derived from the above processes. In this step, all layers of information are logged into the ArcGIS software so that their overlap can provide a map of fractures and faults. On each information layer processed there is a series of lineaments recognizable that can be visually distinguished. After extraction of lineaments by comparing them with bundle compounds and maps derived from digital elevation model and geological map of the region, the lineaments of fractures and faults were separated from other lineaments and their shape file map has been prepared. In order to plot the rose diagram of fractures and faults, the Polar Plots ArcGIS Extension was used. The results obtained from this rose diagram showed that the dominant trend is the northwest southeast followed the trend in the region.
Preparing a map of landslide hazards zoning in the region and investigating its relationship with the lineaments: In order to overlap layers affecting the area's landslide hazard, Gamma fuzzy operator (λ= 0.9) has been used and landslides hazard mapping prepared. Based on the results, 12.40, 8.25, 37, 32.61 and 9.73 percent of the area are located in the very low, moderate, high and very high-risk classes, respectively.
In order to investigate the relationship between the lineaments and the landslide hazard maps as parameters that are affected by the tectonic activities of the area, the lineaments map was integrated with the map of landslide hazard. The results show that the most of lineaments identified in the study area have a northwest-southeast trend that are similar to the main faults of the region and Zagros. It can therefore be said that the lineaments are influenced by the faults and folds mechanism of the region. According to the lineament density in areas in places that are exposed to landslides, one can understand the close relationship between the lineaments and the landslide.
Conclusion
Based on the results obtained from relative active tectonics index, the Vark basin has an active neotectonic, which leads to an uplift in parts of the basin, as well as tilting in the southern part of the area.
In this research, the tectonic of the area, and then the relationship between the lineaments and the map of the landslide risk, as two phenomena affected by active neotectonic were reviewed. Investigating the lineaments of the region shows that the dominant trend is fractures north-west-south-east and following the trend in the region. In addition, analyzing the relationship between the lineaments with the map of the landslide hazard of the area shows that there is a close relationship between the lineaments and the zones with high risk of slipping.
, , ,
Volume 12, Issue 3 (12-2018)
Abstract

Introduction
Artificial stone is a type of building material that consists of natural aggregates, binders, such as cement or polymeric resin and some additives. The aggregates used for the production of the artificial stone are generally supplied from the wastes and scraps of quarries and industrial stone manufactories. Accordingly, the produced rock has a significant economic value.
The mixing design includes more than 80% of natural aggregates and less than 20% additives and binders, such as various types of polymer resin or cement. Due to the fact that artificial stones are designed purposefully and according to engineering patterns, so the stone has different designs and colors and thus can meet the diversity of consumer desire and is an appropriate alternative for natural stones in the building industry. Due to a large number of various rock mines and industrial workshops in Iran, it has the ability to produce artificial stones.
Material and method
The purpose of this paper is to investigate the effect of silicate aggregates on the properties of artificial stones, the aggregates of the three types of natural stone tuff, andesite and granite were selected. The basis of this selection is the mineralogical variety, the textural diversity and the easy accessibility of these three stone types. The binder used in the manufacture of these artificial stones is an unsaturated polyester resin, accounted for 11% of the samples. The crushed and graded samples were poured into the mold after mixing with resin from 85% to 15% and were subjected to a compression pressure of 12 MPa for 24 hours.
Results and discussion
The summary of the results of the experiments carried out in Table 1 is presented.
Table 1. Summary of the results of the experiments on the samples
Rock type Water absorption percentage Point load index Uniaxial compressive strength Brazilian tensile strength Weight loss
(5 cycles)
Tuff Natural 4.84 10.57 145 21.53 -0.0172
Artificial 11.48 6.19 63 12/66 -0.0126
Change rate
Andesite Nature 1.35 10.48 84 12.83 0.0046
Artificial 8.47 1.83 34 5.86 -0.0417
Change rate
Granite Nature 3.01 1.82 41 10.10 -0.0032
Artificial 0.42 3.56 51 10.34 0.0083
Change rate
By reviewing the results, it can be seen that the sample of artificial granite has all the desired indices of a building stone. In comparison to natural granite, the percentage of water absorption and its weight loss is lower; conversely, the point load index, uniaxial compressive strength, and tensile strength of the Brazilian are more. Electronic image observations also show more homogeneity between resin and aggregates but on the other hand, artificial tuff and andesite haven’t got favorable indices, in comparison with natural stones.
Conclusion
The conclusion of the research can be summarized as follows:
The following results were obtained by the preparation of three samples of artificial stone from three types of natural stones: Tuff, andesite and granite, and performing physical and mechanical tests and studying the mineralogical and texture characteristics of the stones:
Mineralogical studies by a polarizing microscope and XRD irradiation analysis showed that the texture of both tuff and andesite contains unstable minerals such as opal and glass materials (amorphous), alongside other minerals. On the other hand, they have a microcrystal texture that includes abundant empty spaces. In contrast, granite is mainly composed of quartz, feldspar and biotite minerals, and the stone fabric has a coherent crystalline structure.
Artificial granite has all the desired indices in comparison to natural granite. That way, the percentage of water absorption and its lost weight are reduced; on the contrary, the point load index, uniaxial compressive strength, and Brazilian tensile strength increase. While artificial tuff and andesite’s indices are not favorable in comparison to natural stone. On the other hand, their water absorption has increased, while their resistance index is lower than the natural stone. The lost weight of these two samples also shows varying conditions.
SEM electronic images taken from the artificial granite sample show good homogeneity between resin and aggregate compared to natural granite while artificial andesite and tuff specimens show the presence of empty spaces and dispersed resin materials.
Thus, it is concluded that the artificial stone samples made from granite aggregates are more suitable for mineralogical, physical and engineering properties than andesite and tuff../files/site1/files/123/2Extended_Abstract.pdf
, ,
Volume 12, Issue 3 (12-2018)
Abstract

Introduction
Texture coefficient (TC) is a method of quantification rock texture by using the image of rock thin sections and image analysis. Many researchers have studied the effect of TC on engineering properties in different rock types (Ozturk et al., 2014). Also, some researchers are expressed that engineering properties of sedimentary rocks are mainly influenced by rock texture (Fahy and Guccione, 1979; Ulusay et al., 1994; Eberli et al., 2003; Khanlari et al., 2016; Ajalloeian et al., 2017). Carbonate rocks which are mainly sedimentary rocks are used in many different projects in Iran. In this research by using of TC, rock texture is quantified and also effects of TC are investigated on engineering properties of some carbonate rocks.
Grain shape and size can be quantified by the length (L), width (W), area (A) and perimeter (P) which are used to formulate the tow coefficients including aspect ratio (AR) and form factor (FF). Also, packing density can be quantified by area weighting of grains (AW) which is the relative proportion of matrix and grains. Angle factor (AF) is used to quantify the angular orientation of grains that is calculated only for elongated grains. The AF is computed by class weighted system applied to acute angular differences between elongated grains (Howarth and Rowlands, 1986, 1987).
High values of these factors can be interpreted as a rock texture which influences the geotechnical properties. The quantitative assessment of rock texture is formulated by these factors in Eq. (1) (Howarth and Rowlands, 1987). 
                     Eq. (1)
where N0 and N1 are the numbers of grains whose aspect ratio is below and above tow, respectively; FF0 and AR1 are the arithmetic mean of discriminated FF and AR, respectively; and AF1 is proposed to divide the AF value by 5 (AF1=AF/5).
TC equation is presented to evaluate mechanical properties like strength and drillability in different rocks, but some researchers found a high correlation between TC with other engineering properties of rocks. Generally, many researchers proposed TC as a good approach of describing and classifying different rocks and predicting some engineering properties in some rocks (Howarth and Rowlands, 1987; Ersoy and Waller, 1995; Ozturk et al., 2004; Alber and Kahraman, 2009; Ozturk and Nasuf, 2013; Ozturk et al., 2014).
Material and methods
28 samples of carbonate rocks were gathered from different Formation of Iran. Rock thin section for each sample was made to calculate TC value. TC was determined by a new method of image analysis. Also, some rock mechanics tests including unit weight, water absorption, porosity, point load index, uniaxial compressive strength (UCS), slake durability index and Los Angeles abrasion loss are conducted. Rock samples are tested according to the international standard ISRM (2007). The dependent variable is engineering properties and the independent variable is TC. The best nonlinear relations with highest correlations (R2) were aimed to predict the engineering properties, to clarify the relationships between them. The efficiency of each prediction equations was investigated by the root mean square error (RMSE) and value account for (VAF). In each samples belonging to the same Formation, regression analysis has been done and compared to the results of all samples and also for UCS and previous equations presented by other researchers.
Results and discussion
There is a significant correlation between TC with some engineering properties. Highest correlation is between TC and UCS (R=0.942) and the lowest with point load index (R=0.635). Overall, when the TC increased, parameters like unit weight, point load index, USC, and durability index increased too, but water absorption, porosity, and Los Angeles abrasion decreased. Increasing TC is correlated with enhancing geomechanical properties of carbonate rocks. Improving engineering properties of rocks (like UCS, Brazilian tensile strength, Young’s modulus, density, shore hardness, porosity and point load index) by increasing TC value are presented by different researchers on different rocks (Howarth and Rowlands, 1987; Ersoy and Waller, 1995; Azzoni et al., 1996; Ozturk et al., 2004; Alber and Kahraman, 2009; Ozturk and Nasuf, 2013; Ozturk et al., 2014). However, in this research, data is limited to carbonate rocks that are abundant sedimentary rocks. Some researcher mentioned that geomechanical properties of sedimentary rocks are mainly influenced by texture (e.g. Fahy and Guccione, 1979; Ulusay et al., 1994; Eberli et al., 2003). In addition, It is mentioned that the strength of carbonate rocks are related to the various textural parameters (Tugrul and Zarif, 2000; Torok and Vasarhelyi, 2010; Jensen et al., 2010; Ajalloeian et al., 2016). Carbonate rocks don't have varied mineralogy's, but the texture in these rocks could be variable.
Results show that the highest correlation index is between TC and UCS and its correlate according to the other investigation (Howarth and Rowlands, 1987; Ozturk et al., 2004). TC equation doesn’t cover all the criteria of rock texture, but it has a good correlation with some engineering properties of carbonate rocks. It can be possible to predict UCS, density and water absorption with VAF accuracy with more than 70 percent and lowest RMSE. TC can be showed some engineering properties of carbonate rocks. Therefore, it can be used in the preliminary design of the project for rock mechanic purposes and obviously, time and cost will be reduced. Moreover, it is very useful for a situation that suitable and enough samples cannot be extracted. It is important that rock samples don’t have any alteration and weathering of minerals and macroscopic heterogeneity.
 
 
Conclusion
In this research, the effect of texture coefficient as a factor that represents the texture of rocks on physical, mechanical and durability properties of carbonate rocks in some parts of Iran was evaluated. Furthermore, it is a time-consuming process to determine the TC of rock, but preparing rock thin sections and microscopic analyses are a part of the preliminary studies in engineering geology. When image analysis methods which are used to determine TC, the time is shortened and accuracy will be increased. TC can be calculated simply by image analysis, but it doesn't cover all the criteria of rock texture. In addition, in TC equation, some factors play an important role, but some factors don’t have a direct effect, and these factors are not fully acknowledged in the original concept of TC. TC equation is presented to evaluate mechanical properties like strength and drillability in different rocks, but some researchers found a high correlation between TC with other engineering properties of rocks. The results indicate that TC value has a direct correlation with UCS, density, durability index and point load index and also, has a reverse correlation with water absorption, Los Angeles abrasion loss and porosity. The strong relationship is between TC and UCS (R2=0.92) and the weak relationship is between TC and porosity (R2=0.58). With regression analysis and TC value, it could be predicted UCS, density and water absorption with accuracy more than 70% VAF which considering previous equations and the proposed equation obtained from this research for UCS., it is showed that although the same trend exists, the noticeable difference is available. However, more studies are needed for investigating by more samples and different rock types and statistical analysis. 
./files/site1/files/123/7Extended_Abstract.pdf

Page 4 from 6     

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb