Volume 25, Issue 76 (3-2025)                   jgs 2025, 25(76): 462-494 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghassabi Z, Ghaemi H, Mirzaei E. (2025). Convection initiation. jgs. 25(76), 462-494. doi:10.61186/jgs.25.76.16
URL: http://jgs.khu.ac.ir/article-1-4155-en.html
1- , emirzaei@gmail.com
Abstract:   (3513 Views)
The structure of deep moist convection can be influenced by various factors, including wind shear, available potential energy of convection, relative humidity, and vertical distribution of these variables. Among these factors, wind shear plays a more significant role in the creation of convection. The interaction between large-scale and synoptic-scale processes, along with the adjustment of available potential energy for convection and the presence of convection inhibitors, creates conditions suitable for the development of convection. The large-scale average reduces the convection inhibitor, while even small vertical velocities, such as a few centimeters per second, can have a noticeable impact on the environment's sounding. The presence of potential instability is also considered an important factor in initiating deep moist convection. When the temperature reaches the critical point and the convection inhibitor is removed, moist deep convection begins. If an air parcel rises above the lower stable layer with low relative convective inhibition energy and high relative free convective potential energy, it supports the development of deep moist convection. The initiation of updrafts by warm air masses and the subsequent development of convection depend on parameters like vertical wind shear and the inversion cap of the environment, among others. Large-scale convective systems can be triggered with less forcing due to the significant uplift of the air mass from the surface to the convection level along the front.
Full-Text [PDF 1991 kb]   (254 Downloads)    
Type of Study: Applicable | Subject: climatology

References
1. Arnott, N. R., Y. P. Richardson, J. M. Wurman, and E. N. Rasmussen, 2006: Relationship between a weakening cold front, misocyclones, and cloud development on 10 June 2002 during IHOP. Mon. Wea. Rev., 134, 311-335. [DOI:10.1175/MWR3065.1]
2. Banacos, P. C., and D. M. Schultz, 2005: The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives. Wea.Forecasting, 20, 351-366. [DOI:10.1175/WAF858.1]
3. Crook, N. A., and J. B. Klemp, 2000: Lifting by convergence lines. J. Atmos. Sci., 57, 873-890. https://doi.org/10.1175/1520-0469(2000)057<0873:LBCL>2.0.CO;2 [DOI:10.1175/1520-0469(2000)0572.0.CO;2]
4. Doswell, C. A., III, 1987: The distinction between largescale and mesoscale contribution to severe convection: A case study example. Wea. Forecasting, 2, 3-16. https://doi.org/10.1175/1520-0434(1987)002<0003:TDBLSA>2.0.CO;2 [DOI:10.1175/1520-0434(1987)0022.0.CO;2]
5. Droegemeier, K. K. and R. B. Wilhelmson, 1985: Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part I: Control simulation and low-level moisture variation. J. Atmos. Sci., 42. 2381-2403. https://doi.org/10.1175/1520-0469(1985)042<2381:TDNMOC>2.0.CO;2 [DOI:10.1175/1520-0469(1985)0422.0.CO;2]
6. Farrell, R. J., and T. N. Carlson, 1989: Evidence for the role of the lid and underrunning in an outbreak of tornadic thunderstorms. Mon. Wea. Rev., 117, 857-871. https://doi.org/10.1175/1520-0493(1989)117<0857:EFTROT>2.0.CO;2 [DOI:10.1175/1520-0493(1989)1172.0.CO;2]
7. Jorgensen, D. P., and T. M. Weckwerth, 2003: Forcing and organization of convective systems. Radar and Atmospheric Science: a Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, 75-104. [DOI:10.1007/978-1-878220-36-3_4]
8. Kingsmill, D. E., 1995: Convection initiation associated with a sea-breeze front, a gust front, and their collision. Mon. Wea. Rev., 123, 2913-2933. https://doi.org/10.1175/1520-0493(1995)123<2913:CIAWAS>2.0.CO;2 [DOI:10.1175/1520-0493(1995)1232.0.CO;2]
9. Koch, S. E., 1984: The role of an apparent mesoscale frontogenetical circulation in squall line initiation. Mon. Wea. Rev., 112, 2090-2111. https://doi.org/10.1175/1520-0493(1984)112<2090:TROAAM>2.0.CO;2 [DOI:10.1175/1520-0493(1984)1122.0.CO;2]
10. Lee, B. D., and R. B. Wilhelmson, 1997a: The numerical simulation of non-supercell tornadogenesis. Part I: nitiation and evolution of pretornadic misocyclone circulations along a dry outflow boundary. J. Atmos. Sci., 54, 32-60. https://doi.org/10.1175/1520-0469(1997)054<0032:TNSONS>2.0.CO;2 [DOI:10.1175/1520-0469(1997)0542.0.CO;2]
11. Markowski, P. M., C. Hannon, and E. Rasmussen, 2006: Observations of convection initiation 'failure' from the 12 June 2002 IHOP deployment. Mon. Wea. Rev., 134, 375-405. [DOI:10.1175/MWR3059.1]
12. Marquis et al. (2007). Wakimoto, R. M., H. V. Murphey, E. V. Browell, and S. Ismail, 2006: The 'triple point' on 24 May 2002 during IHOP. Part I: Airborne Doppler and LASE analyses of the frontal boundaries and convection initiation. Mon. Wea. Rev., 34, 231-250. [DOI:10.1175/MWR3066.1]
13. Weckwerth, T. M., and D. B. Parsons, 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134, 5-22. [DOI:10.1175/MWR3067.1]
14. Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 2516-2536. https://doi.org/10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2 [DOI:10.1175/1520-0493(1986)1142.0.CO;2]
15. Wilson, J. W., G. B. Foote, N. A. Crook, J. C. Fankhauser, C. G. Wade, J. D. Tuttle, and C. K. Mueller, 1992: The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: a case study. Mon. Wea. Rev., 120, 1785-1815. https://doi.org/10.1175/1520-0493(1992)120<1785:TROBLC>2.0.CO;2 [DOI:10.1175/1520-0493(1992)1202.0.CO;2]
16. Ziegler, C. L., and E. N. Rasmussen, 1998: The initiation of moist convection at the dryline: forecasting issues from a case study perspective. Mon. Wea. Rev., 125, 1001-1026. https://doi.org/10.1175/1520-0493(1997)125<1001:CIATDA>2.0.CO;2 [DOI:10.1175/1520-0493(1997)1252.0.CO;2]
17. Ziegler, C. L., T. J. Lee, and R. A. Pielke, 1997: Convection initiation at the dryline: a modeling study. Mon. Wea. Rev., 125, 1001-1026. https://doi.org/10.1175/1520-0493(1997)125<1001:CIATDA>2.0.CO;2 [DOI:10.1175/1520-0493(1997)1252.0.CO;2]
18. Browning, K. A., 1986: Morphology and classification of mid-latitude thunderstorms. Thunderstorm Morphology and Dynamics, E. Kessler, Ed., 2nd edn. University of Oklahoma Press, 133-152.
19. Doswell, C. A., III, 2001: Severe convective storms-an overview. Severe Local Storms, Meteor. Monogr., No. 50, 1-26. [DOI:10.1175/0065-9401-28.50.1]
20. Johnson, R. H., and B. E. Mapes, 2001: Mesoscale processes and severe convective weather. Severe Local Storms,Meteor. Monogr., No. 50, 71-122. [DOI:10.1175/0065-9401-28.50.71]
21. Jorgensen, D. P., and T. M. Weckwerth, 2003: Forcing and organization of convective systems. Radar and Atmospheric Science: a Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, 75-104. [DOI:10.1007/978-1-878220-36-3_4]
22. Richardson, Y. P., K. K. Droegemeier, and R. P. Davies-Jones, 2007: The influence of horizontal environmental variability on numerically simulated convective storms. Part I: Variations in vertical shear. Mon. Wea. Rev., 135, 3429-3455. [DOI:10.1175/MWR3463.1]
23. Schaefer, J. T., L. R. Hoxit, and C. F. Chappell, 1986: Thunderstorms and theirmesoscale environment. Thunderstorm Morphology and Dynamics, E. Kessler, Ed., 2nd edn. University of Oklahoma Press, 113-131.
24. Weisman and Klemp (1982).
25. Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea.Rev., 112, 2479-2498. https://doi.org/10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2 [DOI:10.1175/1520-0493(1984)1122.0.CO;2]
26. Weisman, M. L., and J. B. Klemp, 1986: Characteristics of isolated convective storms. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed. Amer. Meteor. Soc., 331-358. [DOI:10.1007/978-1-935704-20-1_15]
27. Fovell, R. G., and Y. Ogura, 1989: Effect of vertical wind shear on numerically simulated multicell storm structure. J. Atmos. Sci., 46, 3144-3176. https://doi.org/10.1175/1520-0469(1989)046<3144:EOVWSO>2.0.CO;2 [DOI:10.1175/1520-0469(1989)0462.0.CO;2]
28. Fovell, R. G., and P. S. Dailey, 1995: The temporal behavior of numerically simulated multicell-type storms. Part I: Modes of behavior. J. Atmos. Sci., 52, 2073-2095. https://doi.org/10.1175/1520-0469(1995)052<2073:TTBONS>2.0.CO;2 [DOI:10.1175/1520-0469(1995)0522.0.CO;2]
29. Fovell, R. G., and P.-H. Tan, 1998: The temporal behavior of numerically simulated multicell-type storms. Part II: The convective cell life cycle and cell regeneration. Mon. Wea. Rev., 126, 551-577. https://doi.org/10.1175/1520-0493(1998)126<0551:TTBONS>2.0.CO;2 [DOI:10.1175/1520-0493(1998)1262.0.CO;2]
30. Marwitz, J. D., 1972b: The structure and motion of severe hailstorms. Part II: Multicell storms. J. Appl.Meteor., 11, 180-188. https://doi.org/10.1175/1520-0450(1972)011<0180:TSAMOS>2.0.CO;2 [DOI:10.1175/1520-0450(1972)0112.0.CO;2]
31. Wilhelmson, R. B., and C.-S. Chen, 1982: A simulation of the development of successive cells along a cold outflow boundary. J. Atmos. Sci., 39, 1466-1483. https://doi.org/10.1175/1520-0469(1982)039<1466:ASOTDO>2.0.CO;2 [DOI:10.1175/1520-0469(1982)0392.0.CO;2]
32. Yang,M.-J., and R. A. Houze, Jr., 1995: Multicell squall-line structure as a manifestation of vertically trapped gravity waves. Mon. Wea. Rev., 123, 641-660. https://doi.org/10.1175/1520-0493(1995)123<0641:MSLSAA>2.0.CO;2 [DOI:10.1175/1520-0493(1995)1232.0.CO;2]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)