XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdinezhad A, Yamani M, Hassanpour J, Goorabi A, Karimi AhmadAbad M. Analysis of occurrence potential of the earth/debris flow and shallow landslides using the TRIGRS model (Case study: babolrood Basin, Mazandaran). Journal of Spatial Analysis Environmental Hazards 2023; 10 (2) :21-44
URL: http://jsaeh.khu.ac.ir/article-1-3383-en.html
1- University of Tehran
2- University of Tehran , hassanpour@ut.ac.ir
Abstract:   (2293 Views)
Analysis of occurrence potential of the earth/debris flow and
shallow landslides using the TRIGRS model
(Case study: Babolrood Basin, Mazandaran)

In this study, the occurrence potential of rainfall-induced shallow landslides in the Babolrood basin has been investigated. In this basin, due to the mountainous topography and the presence of loose organic soils, the potential of such landslides is high, and landslides of different sizes occur every year after long and intense rainfalls. These landslides, which start with the sliding mechanism in the upper parts of the soil cover, immediately turn into earth/debris flows, and from their joining together, large flows may form downstream of the basin, which is considered a destructive phenomenon. In this research, to investigate the effect of rainfall on the occurrence of shallow landslides and flows, the TRIGRS program, which is a comprehensive and grid-based program for slope stability analysis using the infinite slope method, has been used. In this program, the effect of rainwater penetration into the soil and runoff caused by rainfall, which are important parameters in the occurrence of shallow landslides and subsequent flows, are also fully considered and this natural phenomenon is fully simulated. The input data required for this research includes topographical data of the basin, geological and hydrogeological properties of soil units, and rainfall data in the region, which are prepared in the form of appropriate text files and GIS maps. The output of the Triggers program includes maps of the spatial distribution of the minimum safety factor, the depth of the failure, and the pore water pressure at the failure depth, which are prepared in the form of text files and can be interpreted in GIS-based software. The results of this study showed that in the high and steep parts of the basin, wherever there are soils on a bedrock rich in clay minerals (such as mudstone, marl, and shale), the potential for shallow rainfall-induced landslides is high. In the field studies, a good agreement between the results of this study and the experiences obtained from field observations of landslides caused by rainfall in the region was obtained in terms of their spatial distribution and time of occurrence.
Keywords: Shallow landslide; Pore pressure; Rainfall-induced landslide

 
Full-Text [PDF 2103 kb]   (718 Downloads)    
Type of Study: Applicable | Subject: Special
Received: 2023/06/27 | Accepted: 2023/08/27 | Published: 2023/11/13

References
1. 1) پژوهشکدۀ سوانح طبیعی (1398الف) گزارش مطالعات مطالعات پایدارسازی روستای ازارسی در برابر خطر زمین لغزش (شهرستان بابل، استان مازندران)، منتشر نشده.
2. 2) پژوهشکدۀ سوانح طبیعی (1398ب) گزارش مطالعات مطالعات پایدارسازی روستای ارکا در برابر خطر زمین لغزش (شهرستان بابل، استان مازندران)، منتشر نشده.
3. 3) Alvioli, M.; M., Melillo; F., Guzzetti; M., Rossi; E., Palazzi; J., Von Hardenberg; M.T., Brunetti and S., Peruccacci. 2018. Implications of climate change on landslide hazard in Central Italy. Science of the Total Environment, 630:1528–1543. [DOI:10.1016/j.scitotenv.2018.02.315]
4. 4) Baum, R.L.; W.Z., Savage and J.W., Godt. 2002. TRIGRS—A Fortran program for transient rainfall infiltration and grid-based regional slope stability analysis: U.S. Geological Survey Open-File Report 02-0424.
5. 5) Baum, R.L.; W.Z., Savage and J.W., Godt. 2008. TRIGRS—A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0: U.S. Geological Survey Open-File Report 2008–1159.
6. 6) Baum, R.L.; J.W., Godt and W.Z., Savage. 2010. Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration, Journal of Geophysical Research, 115(3): 1-26.
7. 7) Brabb, E. and B., Harrod. 1989. Landslides: Extent and Economic Significance, A. A. Balkema Publisher, Rotterdam: 385.
8. 8) Catani, F.; S., Segoni and G., Falorni. 2010. An empirical geomorphology-based approach to the spatial prediction of soil thickness at catchment scale. Water Resources Research 46, W05508.
9. 9) Ciurleo, M.; S., Ferlisi; V., Foresta; M.C., Mandaglio and N., Moraci. 2022. Landslide Susceptibility Analysis by Applying TRIGRS to a Reliable Geotechnical Slope Model. Geosciences (Switzerland), 12(1). [DOI:10.3390/geosciences12010018]
10. 10) Delmonaco, G.; G., Leoni, C., Margottini, C., Puglisi and D., Spizzichino. 2003. Large scale debris flow hazard assessment: a geotechnical approach and GIS modeling. Natural Hazards and Earth System Sciences 3: 443–455.
11. 11) Dietrich, W.E.; R., Reiss, M.L., Hus and D.R., Montgomery. 1995. A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Processes 9: 383–400.
12. 12) Freeze, R.A. and J.A. Cherry. 1979. Groundwater, 604 pp., Prentice‐Hall, Englewood Cliffs, NJ.
13. 13) Gioia, E.; S., Gabriella; M., Ferretti; F., Marincioni; J., Godt and R., Baum. 2013. Rainfall-induced shallow landslide forecasting in large areas: application of the TRIGRS model over a broad area of post-orogenic Quaternary sediments.
14. 14) Grelle, G.; M., Soriano, P., Revellino, L., Guerriero, M.G., Anderson, A., Diambra, F., Fiorillo, L., Esposito, N., Diodato and F.M., Guadagno. 2014. Space-Time Prediction of Rainfall-Induced Shallow Landslides through a Combined Probabilistic/Deterministic Approach, Optimized for Initial Water Table Conditions. Bulletin of Engineering Geology and the Environment, 73: 877-890.
15. 15) Iverson, R.M. 2000. Landslide triggering by rain infiltration: Water Resources Research. 36(7): 1897–1910.
16. 16) Liao, Z.; Y., Hong, D., Kirschbaum, R.F., Adler, J.J., Gourley and R., Wooten. 2011. Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)’s predictive skill for hurricane-triggered landslides: a case study in macon county, north carolina, Nat. Hazards, 58(1): 325-339.
17. 17) Liu, C.N. and C.C., Wu. 2008. Mapping susceptibility of rainfall-triggered shallow landslides using a probabilistic approach, Environ Geol, Vol. 55(4): 907-915.
18. 18) Morgenstern, N.R. 1992. The evaluation of slope stability – A 25-year perspective, in: Stability and Performance of Slopes and Embankments – II, Geotechnical Special Publication No. 31, ASCE, New York.
19. 19) Park, D.W.; N.V., Nikhil and S.R., Lee. 2013. Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event, Nat. Hazards Earth Syst. Sci, Vol. 1(3):2547-258 .
20. 20) Richards, L. 1931. Capillary conduction of liquids through porous mediums, Physics, 1:318–333
21. 21) Salciarini, D.; J.W., Godt; W.Z., Savage; P., Conversini; R.L., Baum and J.A., Michael. 2006. Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy. Landslides, 3(3):181–194. [DOI:10.1007/s10346-006-0037-0]
22. 22) Saulnier, G.M.; K.J., Beven and C., Obled. 1997. Including spatially variable effective soil depths in TOPMODEL. Journal of Hydrology 202:158–172.
23. 23) Savage, W.Z.; J.W., Godt, and R.L., Baum. 2003. A model for spatially and temporally distributed shallow landslide initiation by rainfall infiltration, in Rickenmann, D., and Chen, C., eds., Debris- flow hazards mitigation—mechanics, prediction and assessment: Rotterdam, Millpress, p:179–187.
24. 24) Savage, W.Z.; J.W., Godt, and R.L., Baum. 2004. Modeling time-dependent aerial slope stability, in Lacerda, W.A., Erlich, M., Fontoura, S.A.B., and Sayao, A.S.F., eds., Landslides—Evaluation and stabilization, Proceedings of the 9th International Symposium on Landslides: London, A.A. Balkema Publishers, 1: 23–36.
25. 25) Schilirò, L.; C., Esposito and G., Scarascia Mugnozza. 2015. Evaluation of shallow landslide-triggering scenarios through a physically based approach: An example of application in the southern Messina area (northeastern Sicily, Italy). Natural Hazards and Earth System Sciences, 15(9), 2091–2109.
26. 26) Schilirò, L.; J., Cepeda; G., Devoli and L., Piciullo. 2021. Regional analyses of rainfall-induced landslide initiation in upper gudbrandsdalen (South-eastern Norway) using TRIGRS model. Geosciences (Switzerland), 11(1): 1–15.
27. 27) Srivastava, R. and T.C.J., Yeh. 1991. Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils: Water Resources Research، 27: 753–762.
28. 28) Tarboton, D.G. 1997. A new method for the determination of flow directions and contributing areas in grid digital elevation models: Water Resources Research, v. 33(2): 309–319.
29. 29) Vieira, B.C.; N.F., Fernandes; O., Augusto Filho; T.D., Martins and D.R., Montgomery. 2018. Assessing shallow landslide hazards using the TRIGRS and SHALSTAB models, Serra do Mar, Brazil. Environmental Earth Sciences, 77(6). [DOI:10.1007/s12665-018-7436-0]
30. 30) Viet, T.T.; G., Lee, T.M., Thu and H.U., An. 2017. Effect of Digital Elevation Model Resolution on Shallow Landslide Modeling Using TRIGRS, Natural Hazards Review, V. 18 (2) - May 2017
31. 1) پژوهشکدۀ سوانح طبیعی (1398الف) گزارش مطالعات مطالعات پایدارسازی روستای ازارسی در برابر خطر زمین لغزش (شهرستان بابل، استان مازندران)، منتشر نشده.
32. 2) پژوهشکدۀ سوانح طبیعی (1398ب) گزارش مطالعات مطالعات پایدارسازی روستای ارکا در برابر خطر زمین لغزش (شهرستان بابل، استان مازندران)، منتشر نشده.
33. 3) Alvioli, M.; M., Melillo; F., Guzzetti; M., Rossi; E., Palazzi; J., Von Hardenberg; M.T., Brunetti and S., Peruccacci. 2018. Implications of climate change on landslide hazard in Central Italy. Science of the Total Environment, 630:1528–1543. [DOI:10.1016/j.scitotenv.2018.02.315]
34. 4) Baum, R.L.; W.Z., Savage and J.W., Godt. 2002. TRIGRS—A Fortran program for transient rainfall infiltration and grid-based regional slope stability analysis: U.S. Geological Survey Open-File Report 02-0424.
35. 5) Baum, R.L.; W.Z., Savage and J.W., Godt. 2008. TRIGRS—A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0: U.S. Geological Survey Open-File Report 2008–1159.
36. 6) Baum, R.L.; J.W., Godt and W.Z., Savage. 2010. Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration, Journal of Geophysical Research, 115(3): 1-26.
37. 7) Brabb, E. and B., Harrod. 1989. Landslides: Extent and Economic Significance, A. A. Balkema Publisher, Rotterdam: 385.
38. 8) Catani, F.; S., Segoni and G., Falorni. 2010. An empirical geomorphology-based approach to the spatial prediction of soil thickness at catchment scale. Water Resources Research 46, W05508.
39. 9) Ciurleo, M.; S., Ferlisi; V., Foresta; M.C., Mandaglio and N., Moraci. 2022. Landslide Susceptibility Analysis by Applying TRIGRS to a Reliable Geotechnical Slope Model. Geosciences (Switzerland), 12(1). [DOI:10.3390/geosciences12010018]
40. 10) Delmonaco, G.; G., Leoni, C., Margottini, C., Puglisi and D., Spizzichino. 2003. Large scale debris flow hazard assessment: a geotechnical approach and GIS modeling. Natural Hazards and Earth System Sciences 3: 443–455.
41. 11) Dietrich, W.E.; R., Reiss, M.L., Hus and D.R., Montgomery. 1995. A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Processes 9: 383–400.
42. 12) Freeze, R.A. and J.A. Cherry. 1979. Groundwater, 604 pp., Prentice‐Hall, Englewood Cliffs, NJ.
43. 13) Gioia, E.; S., Gabriella; M., Ferretti; F., Marincioni; J., Godt and R., Baum. 2013. Rainfall-induced shallow landslide forecasting in large areas: application of the TRIGRS model over a broad area of post-orogenic Quaternary sediments.
44. 14) Grelle, G.; M., Soriano, P., Revellino, L., Guerriero, M.G., Anderson, A., Diambra, F., Fiorillo, L., Esposito, N., Diodato and F.M., Guadagno. 2014. Space-Time Prediction of Rainfall-Induced Shallow Landslides through a Combined Probabilistic/Deterministic Approach, Optimized for Initial Water Table Conditions. Bulletin of Engineering Geology and the Environment, 73: 877-890.
45. 15) Iverson, R.M. 2000. Landslide triggering by rain infiltration: Water Resources Research. 36(7): 1897–1910.
46. 16) Liao, Z.; Y., Hong, D., Kirschbaum, R.F., Adler, J.J., Gourley and R., Wooten. 2011. Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)’s predictive skill for hurricane-triggered landslides: a case study in macon county, north carolina, Nat. Hazards, 58(1): 325-339.
47. 17) Liu, C.N. and C.C., Wu. 2008. Mapping susceptibility of rainfall-triggered shallow landslides using a probabilistic approach, Environ Geol, Vol. 55(4): 907-915.
48. 18) Morgenstern, N.R. 1992. The evaluation of slope stability – A 25-year perspective, in: Stability and Performance of Slopes and Embankments – II, Geotechnical Special Publication No. 31, ASCE, New York.
49. 19) Park, D.W.; N.V., Nikhil and S.R., Lee. 2013. Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event, Nat. Hazards Earth Syst. Sci, Vol. 1(3):2547-258 .
50. 20) Richards, L. 1931. Capillary conduction of liquids through porous mediums, Physics, 1:318–333
51. 21) Salciarini, D.; J.W., Godt; W.Z., Savage; P., Conversini; R.L., Baum and J.A., Michael. 2006. Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy. Landslides, 3(3):181–194. [DOI:10.1007/s10346-006-0037-0]
52. 22) Saulnier, G.M.; K.J., Beven and C., Obled. 1997. Including spatially variable effective soil depths in TOPMODEL. Journal of Hydrology 202:158–172.
53. 23) Savage, W.Z.; J.W., Godt, and R.L., Baum. 2003. A model for spatially and temporally distributed shallow landslide initiation by rainfall infiltration, in Rickenmann, D., and Chen, C., eds., Debris- flow hazards mitigation—mechanics, prediction and assessment: Rotterdam, Millpress, p:179–187.
54. 24) Savage, W.Z.; J.W., Godt, and R.L., Baum. 2004. Modeling time-dependent aerial slope stability, in Lacerda, W.A., Erlich, M., Fontoura, S.A.B., and Sayao, A.S.F., eds., Landslides—Evaluation and stabilization, Proceedings of the 9th International Symposium on Landslides: London, A.A. Balkema Publishers, 1: 23–36.
55. 25) Schilirò, L.; C., Esposito and G., Scarascia Mugnozza. 2015. Evaluation of shallow landslide-triggering scenarios through a physically based approach: An example of application in the southern Messina area (northeastern Sicily, Italy). Natural Hazards and Earth System Sciences, 15(9), 2091–2109.
56. 26) Schilirò, L.; J., Cepeda; G., Devoli and L., Piciullo. 2021. Regional analyses of rainfall-induced landslide initiation in upper gudbrandsdalen (South-eastern Norway) using TRIGRS model. Geosciences (Switzerland), 11(1): 1–15.
57. 27) Srivastava, R. and T.C.J., Yeh. 1991. Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils: Water Resources Research، 27: 753–762.
58. 28) Tarboton, D.G. 1997. A new method for the determination of flow directions and contributing areas in grid digital elevation models: Water Resources Research, v. 33(2): 309–319.
59. 29) Vieira, B.C.; N.F., Fernandes; O., Augusto Filho; T.D., Martins and D.R., Montgomery. 2018. Assessing shallow landslide hazards using the TRIGRS and SHALSTAB models, Serra do Mar, Brazil. Environmental Earth Sciences, 77(6). [DOI:10.1007/s12665-018-7436-0]
60. 30) Viet, T.T.; G., Lee, T.M., Thu and H.U., An. 2017. Effect of Digital Elevation Model Resolution on Shallow Landslide Modeling Using TRIGRS, Natural Hazards Review, V. 18 (2) - May 2017

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb