Search published articles

Showing 2 results for Ground Reaction Forces

Mr. Amirali Jafarnezhadgero, Ms. Arezoo Madahi, Mr. Milad Piran Hamlabadi,
Volume 0, Issue 0 (11-2019)

Background and Aims: The surface quality and type are an important factor that may influence the risk of sustaining injuries during running. The aim of the present study was to compare forces excreted on the foot while running on the ground and artificial turf in people with pronated and supinated feet.
Materials and Methods: The statistical population of the present study consisted of healthy men with pronated and supinated feet in Ardabil province. A statistical sample of 30 people aged 20-25 years was selected by available sampling and participated in the present study. Statistical samples were divided into three groups. There were 10 patients in the pronated foot group, 10 people in the supinated foot group and the third group of 10 people as the control group. The navicular drop test was used to measure foot type. A Bertec force plate was used to record ground reaction forces while running on ground and artificial turf at constant speed (about 3.2 m/s). The ground reaction forces in the vertical (Fz), anterior-posterior (Fy) and medio-lateral (Fx) directions were recorded during running.
Results: The results revealed greater medio-lateral ground reaction force at the heel contact in males with pronated feet while running on the ground than that artificial grass. In addition, the time to reach the peak of the vertical component at heel contact during running on grass was greater compared to the ground.
Conclusion: The results showed that the use of artificial turf can improve the risk factors for injury in people with pronated and supinated feet.
A.a Jafarnezhadgero, F Ghorbanlou, S.m Alavi-Mehr, M Majlesi,
Volume 17, Issue 18 (12-2019)

Genu varus is one of the malalignment of the lower limbs, the failure to correct it leads to secondary abnormalities in adulthood. The purpose of this study was to investigate the effects of a corrective exercise program on ground reaction forces, loading rates, impulses and free moment during stance phase of walking. 17 children with genu varus were volunteered to participate in this study (Age:11.71±1.68 years, Height:1.40±0.09 meter, Weight:35.14±11.47 Kg, and BMI:17.49±3.61Kg/M2). Ground reaction forces were recorded with two Kisler force plates during pre and post-test. At the dominant limb, the amount of time to peak in the mediolateral ground reaction force component during heel contact decreased by of 61.90% (P=0.011). Also, the time to peak of the vertical ground reaction force component during mid-stance tend to increase significantly by 11.47% during the post-test compared to the pre-test (P=0.063). The values of peak ground reaction force components, loading rate, impulse and free moment did not show any significant differences between pre and post-test. The findings showed that the corrective exercise trainings used in the present study had the most effect on the time to peak components of the GRF, but there were no significant effects on the loading rate, impulses, and free moment components. The corrective exercises used in the present study have had the most effect on the time to peak of ground reaction forces and improve them. On the other hand, these exercises did not have any significant effect on the vertical loading rate, impact and free moment values.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Research in Sport Medicine and Technology

Designed & Developed by: Yektaweb