Search published articles

Showing 2 results for Recovery

, , , ,
Volume 9, Issue 1 (3-2011)

In order to compare the acute effects of OR and Megabasic (two energy drinks)
by a placebo, 24 volunteer male athletes (age: 24.3±2.03 yrs, height
173.56±7.02cm and weight 75.43±3.07kg) participated in two consecutive
RAST tests by 40 min rest interval in between within 3 randomly divided groups.
There were six times blood sampling (before and also 2 and 4 min after than
both tests) in order to analyze blood lactate and PH levels (Gas analyzer) and
also the anaerobic indices (Peak, mean and mean power) was calculated. The
data corresponding to each group’s blood factors was compared by ANOVA for
repeated measurements (post hoc: Bonferoni), their changes between two
consecutive RAST tests was compared by ANOVA (post hoc: LSD) and
anaerobic power data for each group was compared using pair sample t test at
0.05 significance level. Results: Significant changes were observed in blood
lactate and PH levels during repeated measurements in both RAST tests at all
groups (p<0.05). There were also significant differences in the amount of the
changes in between the measurements between groups (p<0.05). Additionally,
Peak and min power only significantly increased in second RAST test rather
than first one and mean power also significantly decreased in both energy drink
groups between the first and second RAST tests (p<0.05). Conclusions:
Consumption of the OR can affect anaerobic power during short term repeated
interval activities. However, there are evident differences in between multiple
brands of energy drinks with regard to the amount of the modifications in the
changes at both blood lactate and PH levels, in spite of this fact that there is
any consensus in this field because of the lack of comprehensive researches.

, ,
Volume 9, Issue 2 (10-2011)

Background/aim: Many studies were shown the effect of type's recovery on
performance. Active recovery has been reported by some to promote greater
exercise capacity, while others have not confirmed these results. The aim of this
study was to determine the effect of three types of recovery during repeated
high-intensity endurance training on blood buffering capacity and H+
regulation. Design/method; the statistical population of this research was
physical education students studying at Tarbiat Moallem University of Tehran.
Ten students participated in this study. Each individual completed a special
questionnaire to be healthy during the study period. On subsequent days they
performed repeated high-intensity endurance test (RHIET).The RHIET
consist of four bouts about 2; 30 minutes. Recovery periods of 5minutes were
allowed between bouts. RHIET differed in the kind of activity performed during
the recovery periods; Gouging at 63% maximum heart rate, stretching exercises
and lying supine. A sample of 5CC blood artery obtained from each individual
immediately after the last recovery period. Blood sample were sent to the
laboratory for homology test. Their buffering capacity was measured by
assessment of the following parameters: PH, PCO2, BB, HCO3
-, BE, O2-sat.
The ANOVA Repeated-Measures was use to analyze the data by spss16.
Results; Significant differences were shown between the active recovery and
the stretching exercises recovery and between the inactive recovery and the
stretching exercises recovery on PH, BB and between active recovery and the
inactive recovery on O2-sat (P≤0/05). There were no significant differences
between the active, inactive and stretching exercises recovery on HCO3
-, PCO2
and BE (p≤0/05). Conclusion; Therefore, this study has show that the inactive
recovery improve buffering capacity compared to the stretching exercises and
the active recovery. This finding is agreement with research dating Argyris
(2004), DuPont (2004), Buchheit (2009) and in agreement with research dating
Dorado (2004). Nick Draper (2006), De Geus Bas (2007). Alveolar gas
exchange can therefore increase due to slower heart rate and slower breathing
rate. The kidneys removal H+ and reabsorption HCO3
-. The body's metabolism
becomes lower and producing metabolic is decrease. Temp whole body
(muscle, blood) is decrease; oxygen is combined with the hemoglobin strongly.
Hence, PH is increase and buffering capacity is improved.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Research in Sport Medicine and Technology

Designed & Developed by: Yektaweb