Volume 6, Issue 1 (5-2019)                   nbr 2019, 6(1): 79-87 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Elmi F, Etemadifar Z, Emtiazi G. Study the effect of environmental factors and different carbon sources on dibenzothiophene desulfurization by Exophiala spinifera. nbr 2019; 6 (1) :79-87
URL: http://nbr.khu.ac.ir/article-1-2671-en.html
University of Isfahan , z.etemadifar@sci.ui.ac.ir
Abstract:   (4521 Views)

It is necessary to reduce the amount of sulfur in fossil fuels due to direct impact of the quality of these fuels on the environment. In this research, a novel fungus strain of Exophiala spinifera, namely FM, was used to desulfurize dibenzothiophene (DBT) as a model cyclic sulfur compounds in oil and fossil fuels. HPLC analysis indicated that the fungus was capable of reducing 99% of DBT concentration in BSM medium after seven days. This fungus utilized DBT as a sulfur source by co-metabolism reaction with other carbon sources such as glucose. Exophiala spinifera was inoculated in BSM medium containing DBT with various carbon sources including ethanol, glucose, succinate, and glycerol. This fungus had the highest growth and desulfurization capability on glucose as a carbon source after 96 h. E. spinifera had best growth and desulfurization rates in 0.3mM DBT. Optimum DBT desulfurization and growth rate of this fungus was observed at 26-30 oC. Suitable pH for the optimum growth and desulfurization activity of E. spinifera strain FM ranged 4-5.

Full-Text [PDF 1198 kb]   (1291 Downloads)    
Type of Study: Original Article | Subject: Microbiology
Received: 2016/11/19 | Revised: 2019/05/6 | Accepted: 2018/11/20 | Published: 2019/04/30 | ePublished: 2019/04/30

References
1. Bahuguna, A., Madhuri, K.L., Munjal, A., Ravindra, N.S., Dangwal, K. 2011. Desulfurization of dibenzoth-iophene (DBT) by a novel strain Lysinibacillus sphaericus DMT-7 isolated from diesel contaminated soil. - J. Environ. Sci. 23: 975-982. [DOI:10.1016/S1001-0742(10)60504-9]
2. Bezalel, L., Hadar, Y. and Cerniglia, C.E. 1997. Enzymatic Mechanisms Involved in Phenanthrene Degradation by the White Rot Fungus Pleurotus ostreatus. - Appl. Environ. Microbiol. 63: 2495-2501.
3. Bezalel, L., Hadar, Y., FU, P.P., Fremman, J.P. and Cerniglia, C.J. 1996. Metabolism of Phenanthrene by the White Rot Fungus Pleurotus ostreatus. - App. Environ. Microbiol. 62: 2547-2553.
4. Campos-Martin, J.M., Capel-Sanchez, M.C., Perez-Presas, K. and Fierro, J.L. 2010. Oxidative processes of desulfurization of liquid fuels. - J. Chem. Technol. Biot. 85: 879-890. [DOI:10.1002/jctb.2371]
5. Eibes, G., Cajthaml, T., Moreira, M.T., Feijoo, G. and Lema, J.M. 2006. Enzymatic degradation of anthr-acene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. - Chemosphere 64: 408-414. [DOI:10.1016/j.chemosphere.2005.11.075]
6. Elmi, F., Etemadifar, Z. and Emtiazi, G. 2015. A novel metabolite (1,3-benzodiol, 5- hexyl) production by Exophiala spinifera strain FM through dibenz-othiophene desulfurization. - World J. Microbiol. Biotechnol. 31: 813-821. [DOI:10.1007/s11274-015-1835-0]
7. Etemadifar, Z., Emtiazi, G., and Nahvi, I. 2010. Survey of the growth, respiration and biofilm formation of dibenzothiophene consumer yeast, Trichosporon sp. by microtiter plate method. - Iran. J. Biol. 21: 891-899.
8. Etemadifar, Z., Emtiazi, G. and Peimanfar, S. 2006. Removal of dibenzothiophene, biphenyl and phenol from waste by Trichosporon sp. - Sci. Res. Essays. 1: 072-076.
9. Faison, B.D., Clark, T.M., Lewis, S.N., Ma, C.Y., Sharkey, D.M. and Woodward, C.A. 1991. Degradation of organic sulfur compounds by a coal- solubilizing fungus. - Appl. Biochem. Biotechnol. 28: 237-251. [DOI:10.1007/BF02922604]
10. Garapati, V.K. and Mishra, S. 2012. Hydrocarbon degradation using fungal isolate: nutrients optimized by combined grey relational analysis. - Int. J. Eng. Res. Appl. 2: 390-399.
11. Gilbert, S.C., Morton, J., Buchanan, S., Oldfield, C. and McRoberts, A. 1998. Isolation of a unique benzoth-iophene- desulphurizing bacterium, Gordona sp. strain 213E (NCIMB 40816), and characterization of the desulphurization pathway. - Microbiology 144: 2545-2553. [DOI:10.1099/00221287-144-9-2545]
12. Kilbane, J.J. 2006. Microbial biocatalyst developments to upgrade fossil fuels. - Curr. Opin. Biotechnol. 17: 305-314. [DOI:10.1016/j.copbio.2006.04.005]
13. Kim, Y.J., Chang, J.H., Cho, K.S., Ryu, H.W. and Chang, Y.K. 2004. A physiological study on growth and dibenzothiophene (DBT) desulfurization characteristics of Gordonia sp. - CYKS1. Chem. Eng. J. 21: 436-441. [DOI:10.1007/BF02705433]
14. Lin, L., Hong, L., Jianhua, Q. and Jinjuan, X. 2010. Progress in the Technology for Desulfurization of Crude Oil. - China. Pet. Process. pp 12: 1-6
15. Ma, C.Q., Feng, J.H., Zeng ,Y.Y., Cai, X.F., Sun, B.P., Zhang, Z.B., Blankespoor, H.D. and Xu, P. 2007. Methods for the preparation of a biodesulfurization biocatalyst using Rhodococcus sp. - Chemosphere 65: 165-169. [DOI:10.1016/j.chemosphere.2006.03.010]
16. Maghsoudi, S., Vossoughi, M., Kheirolomoom, A., Tana-ka, E. and Katoch, S. 2001. Biodesulfurization of hydrocarbons and diesel fuels by Rhodococcus sp. Strain P32C1. - Biochem. Eng. j. 8: 151-156. [DOI:10.1016/S1369-703X(01)00097-3]
17. Mezcua, M., Fern'andez-Alba, A.R., Rodr'ıguez, A., Boltes., K., Leton, P. and Garcia-Calvo, E. 2007. Chromatographic methods applied in the monitoring of biodesulfurization processes-state of the art. - Talanta 73: 103-114. [DOI:10.1016/j.talanta.2007.03.011]
18. Piddington, C.S., Kovacevich, B.R., and Rambosek, J. 1995. Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulf-urization operon of Rhodococcus sp. strain IGTS8. - Appl. Environ. Microbiol. 61: 468-475.
19. Setti, L., Bonoli, S., Badiali, E. and Giuliani, S. 2003. Inverse phase transfer biocatalysis for a biodesul-furization process of middle distillates. - Becth. Mock. 44: 80-83.
20. Soleimani, M., Bassi, A. and Margaritis, A. 2007. Biodesulfurization of refractory organic sulfur compounds in fossil fuels. - Biotechnol. Adv. 25: 570-596. [DOI:10.1016/j.biotechadv.2007.07.003]
21. Stoner, D.L., Wey, J.E., Barrett, K.B., Jolley, J.G., Wright, R.B. and Dugan, P.R. 1990 .Modification of water- soluble coal- derived products by Dibenzothiophene- Degrading Microorganisms. - Appl. Environ. Micro-biol. 56: 2667-2676.
22. Van Hamme, J.D., Wong, E.T., Dettman, H., Gray, M.R. and Pickard, M.A. 2003. Dibenzyl sulfide metabolism by white rot fungi. - Appl. Environ. Microbiol. 69: 1320-1324. [DOI:10.1128/AEM.69.2.1320-1324.2003]
23. Wei, Y., Chen, W., Huang, C., Wu, H., Sun, Y., Lo, C. and Janarthanan, O. 2011. Screening and evaluation of polyhydroxybutyrate- producing strains from indigenous isolate Cupriavidus taiwanensis strains. - Int. J. Mol. Sci. 12: 252-265. [DOI:10.3390/ijms12010252]
24. Yushikawa, O., Ishii, Y., Koizumi, K.I., Ohshiro, T., Izumi, Y. and Maruhashi, K. 2002. Enhancement and stabilization of desulfurization activity of Rhodococcus erythropolis KA2-5-1 by feeding ethanol and sulfur components. - J. Biosci. Bioeng. 94: 447-452. [DOI:10.1263/jbb.94.447]
25. Zakharyants, A.A., Murygina, V.P. and Kalyuzhnyi, S.V. 2004. Screening of Rhodococcus species revealing desulfurization activity with regard to dibenzothiophene. - In: Biocatalytic Technology and Nanotechnology. Zaikov, G.E. (ed.). Nova Science Publishers, Inc, New York, United States. pp: 51-58.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2025 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb