Volume 4, Issue 3 (12-2017)                   nbr 2017, 4(3): 215-225 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sharifdini H, Parivar K, Hayati Rodbari N. Study of the effect of iron oxide nanoparticles on mouse testis development during the embryonic period in NMRI strain. nbr 2017; 4 (3) :215-225
URL: http://nbr.khu.ac.ir/article-1-3019-en.html
Tehran Science and Research Branch, Islamic Azad University
Abstract:   (6451 Views)
Of different types of bio-compatible nano‌particles, iron oxide nanoparticle has attracted attention for its applications especially in medicine and magnetic resonance imaging (MRI). We decided to study histological changes in testis and spermatogenesis in mature male mice that are affected by ironoxide nanoparticles (Fe2O3) during fetal period. In this study, the mice were divided into three experimental and two control and sham groups. Iron oxide at do-ses of 10, 30, 50 mg/kg were injected into pregnant mice during 10th, 12th and 14th days of the critical period of fetus testis development. After the maturation of the mice which were born, slices with the thickness of 0.06 µm were prep-ared from adult male testis and epididymis, stained with hematoxylin and eosin. The cells were counted, then the obta-ined data was analyzed with one-way ANONA and Tukey testes. The results showed that the number of epididymis sp-erms at the doses of 10 and 30 mg/kg, testis weight at the dose of 30 mg/kg, primary spermatocytes at the dose 10mg/kg had increased, while the testis diameter in all the three experimental groups and the volume of the testis at the dose of 50 mg/kg had decreased. Disorganization and vacuolization were observed at high doses. Passing through the cell me-mbrane, and considering its oxidation and reduction potentials, it was observed that Iron oxide nanoparticle acts as anti-oxidant at low doses and shows toxicity at high doses. The fact obtained in the paper reflects the dual potential of the ir-on oxide nanoparticle.
Full-Text [PDF 944 kb]   (1946 Downloads)    
Type of Study: Original Article | Subject: Animal Biology
Received: 2017/12/9 | Revised: 2018/01/4 | Accepted: 2017/12/9 | Published: 2017/12/9 | ePublished: 2017/12/9

References
1. Afkhami Ardakani, M., Shirband, A., Golzadeh, J., As-adi Samani, M., Latifi, E., Kheylapour, M. and Ja-fari, N. 2013. The effect of iron oxide nanoparticles on liver enzymes (ALT, AST and ALP), thyroid ho-rmones (T3 and T4) and TSH in rats. – J. Shahrekord Univ. Med. Sci. 14: 82-88.
2. Ankamwar, B., Lai, T.C., Huang, J.H., Liu, R.S., Hsiao, M. and Chen, C.H. 2010. Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assa-ys using normal, glia and breast cancer cells. – Nano-tech. 21: 75-102.
3. Arbab, A., Lindsey, A., Bashaw, B., Bradley, R., Miller, B.S. and Elaine, K. 2003. Characterization of biophy-sical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and tran-sfection agent for cellular MR imaging – Radiology 229: 838-846.
4. Auffan, M., Rose, J., Wiesner, M.R. and Bottero, J.Y. 2009. Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. – Environ. Pollut. 157: 1127–1133.
5. Ay, J. and Soleimani Rad, J. 2008. Histopathologic effects of 120 volt electromagnetic fields and protect-tive effect of epinephrine on spermatogenesis in adult rats. – Sci. Med. J. Ahwaz Jundishapur Univ. Med. Sci .7: 1-9.
6. Badkoobeh, P., Parivar, K., Kal antar, S.M., Salabat, A. and Hosseini, S.D. 2013. Protective effect of nano-zinc oxide on reproductive system and fertility of ad-ult male Wistar rats following doxorubicin treatment. – Arak Med. Uni. J. 70: 1-9.
7. Bentley, G.E., Ubuka, T.and McGuire, NL. 2008. Gona-dotropin-inhibitory hormone and its receptor in the avian reproductive system. – J. Gen. Comp. Endocr-inol. 156: 34-43.
8. Bing, W., Weiyue, F., Meng, W., Tiancheng, W., Yiqun, G., Motao, Z., Hong, O., Junwen, S., Fang, Z., Yuliang, Z., Zhifang, C., Haifang, W. and Jing, W. 2008. Acute toxicological impact of nano- and subm-icro-scaled zinc oxide powder on healthy adult mice. – J. Nanopart. Res. 10:263–276.
9. Boldet, D. 1999. New perspectives on iron: an introd-uction. – Am. J. Med. Sci. 318: 207- 212.
10. Braydich-stolle, L., Hussain, S., Schlager, J. and Hofmann, M. 2005. In vitro cytotoxity of nanopar-ticles in mammalian germ line stem celles. – J. Toxi-col. Sci. 88: 412-419.
11. Fatahian Dehkordi, R.A., Heidarnejad, S. and Ameri, A. 2015. ZnO nanoparticles effects on male rat gonad histology and its effect on blood serum sex factors. – J. Cell and Tissue. 6: 187-194.
12. Hentze, M.W. and Muckenthaler, M.V. 2004. Balancing acts molecular control of mammalian iron metabo-lism. – Cell 117: 285-97.
13. Junquiera, L. 2010. Basic histology. – Khosravi Publ-ication, Tehran, 478 pp.
14. Lan, Z. and Yang, W.X. 2012. Nanoparticles and sper-matogenesis: how do nanoparticles affect spermato-genesis and penetrate the blood-testis barrier. – J. Nanomed. 7: 579-596.
15. Mahmoudi, M., Sant, S., Wang, B. and Laurent, S. 2011. Superparamagnetic iron oxide nanoparticles (SPIO-Ns): development, surface modification and applicat-ions in chemotherapy. – Adv. Drug Del. Rev. 63:24-46
16. Mahmoudi, M., Simchi, A. and Imani, M. 2010. A new approach for the in vitro identification of the cytoto-cxicity of superparamagnetic iron oxide nanoparti-cles. – J. Colloids Surf. B. 75: 300-309.
17. Mohamed, M., Seweidy, E., Mervat, A., Sousou, A. and Hebatallah, A. 2010. Effect of prolonged intake of iron enriched diet on testicular functions of experime-ntal rats. – Nat. Sci. 2: 551-556.
18. Moslemi, N., Najafzadeh, H., Koochak, M. and Shahriary, A. 2013. Evaluation of lipid profile and oxidative stress indices in serum and liver of rat after iron oxide nanoparticle administration. – J. Kashan Uni. Med. Sci. 17:247-254.
19. Mozafari, Z., Parivar, K., Hayati Roodbari, N. and Ir-ani, Sh. 2016. Histopathology of epididymis in adult NMRI male rats treated with zinc oxide nanoparti-cles. – J. Med. Sci. Islamic Azad University 26: 142-148.
20. Naghavi, S., Samim, M., Abdin, M.Z., Ahmed, F.J., Maitra, A.N., Prashant, C.K. and Dinda, A.K. 2010. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. – Int. J. Nanomed. 5: 983-989.
21. Najafzade, H., Razijalali, M., Morovvati, H. and Taravati, F. 2010.Comparison prophylactic effect of silymarin and deferoxamine on iron overloadinduced heaptotoxicity in rat. – J. Med Toxicol. 6: 22-6.
22. Nasri, S., Rezai-Zarchi, S., Kerishchi, P. and Sadeghi, S. 2015. The effect of iron oxide nanopaticles on sperm numbers and mobility in male mice. – Zahedan. J. Res. Med. Sci. 17: e2185.
23. Noori, A., Parivar, K., Modaresi, M., Messripour, M., Yousefi, M. and Amiri, H. 2011. Effect of magnetic iron oxide nanoparticles on pregnancy and testicular developpment of mice. – Afr. J. Biotechnol. 10: 1221-1227.
24. Ping, M., Qing, L., Jiao, C., Juan, D., Shumao, D., Zhuge, X. and Xu, Y. 2012. Intraperitoneal injection of magnetic Fe₃O₄-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice. – Int. J. Nanomed. 7: 4809-4818.
25. Seyedalipour, B., Barimani, N., Dehpour Jooybari, A., Hoseini, S.M. and Oshrieh, M. 2015. Histopath-ological evaluation of kidney and heart tissues after exposure to copper oxide nanoparticles in Mus mu-sculus. – J. Babol Uni. Med. Sci. 17: 44-50
26. Singh, N., Jenkins, G.J.S., Asadi, R. and Doak, S.H. 2010. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). – J. Nano Rev. 1: 1-15.
27. Talebi, A.R., Khorsandi, L. and Moridian, M. 2013. The effect of zinc oxide nanoparticles on mouse sperma-togenesis. – J. Assit. Reprod. Gen. 30: 1203-1209.
28. Taylor, U., Barchanski, A. and Garrels, W. 2012. Toxicity of gold nanoparticles on somatic and reprod-ucetive cells. – Med. Biol. 733: 125-133.
29. Tetley, T.D. 2007. Health effects of nanomaterials. – Biochem. Soc. J. 35: 527-531.
30. Teske, S.S., Detweiler, J. and Corrella, S. 2015. The Biomechanisms of metal and metal-oxide nanoparti-cles’ interactions with cells. – Int. J. Environ. Res. Publ. Health. 12: 1112–1134.
31. Thorek, D., Chen, A., Czupryna, J. and Tsourkas, A. 2006. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. – Health 34: 23-38.
32. Valko, M., Leibfritz, D., Moncol, J., Cronin, M., Mazur, M. and Telser, J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. – Int. J. Biochem. Cell Biol. 39: 44-84.
33. Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M. and Mazur, M. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. – Chem. Biol. Interact. 160: 1-40.
34. Vargas-Arigony, A.L., Marqes-de-oliveira, I., Machado, M., Lilian-Bordin, D., Bergter, L., Pra, D. and Attonio-Pegas-Henriqes, J. 2013. The influence of micronutrients in cell culture: a reflection on viability and genomic stability. – Biomed. Res. Int. 2013: Article ID 597282, 22 pages.
35. Yamashita, K. and Yoshioka, Y. 2012. Safety assessment of nanomaterials in reproductive developmental filed. – J. Yakugaku Zasshi. 132: 331-335.
36. Yousefi Babadi, V., Najafi, L., Najafi, A., Gholami, H., BeigiZarji, M.E. and Golzadeh, J. 2012. Evaluation of iron oxide nanoparticles effects on tissue and enzymes of liver in rats. – J. Pharma. Biomed. Sci. 23: 1-5.
37. Zanetti, S.R., Maldonado, E.N. and Aveldano M.I. 2007. Doxorubicin affects testicular lipids with long-chain (C18-C22) and very long-chain (C24-C32) polyunsa-turated fatty acids. – Cancer Res. 67: 6973-6980.
39. Afkhami Ardakani, M., Shirband, A., Golzadeh, J., As-adi Samani, M., Latifi, E., Kheylapour, M. and Ja-fari, N. 2013. The effect of iron oxide nanoparticles on liver enzymes (ALT, AST and ALP), thyroid ho-rmones (T3 and T4) and TSH in rats. – J. Shahrekord Univ. Med. Sci. 14: 82-88.
40. Ankamwar, B., Lai, T.C., Huang, J.H., Liu, R.S., Hsiao, M. and Chen, C.H. 2010. Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assa-ys using normal, glia and breast cancer cells. – Nano-tech. 21: 75-102.
41. Arbab, A., Lindsey, A., Bashaw, B., Bradley, R., Miller, B.S. and Elaine, K. 2003. Characterization of biophy-sical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and tran-sfection agent for cellular MR imaging – Radiology 229: 838-846.
42. Auffan, M., Rose, J., Wiesner, M.R. and Bottero, J.Y. 2009. Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. – Environ. Pollut. 157: 1127–1133. [DOI:10.1016/j.envpol.2008.10.002]
43. Ay, J. and Soleimani Rad, J. 2008. Histopathologic effects of 120 volt electromagnetic fields and protect-tive effect of epinephrine on spermatogenesis in adult rats. – Sci. Med. J. Ahwaz Jundishapur Univ. Med. Sci .7: 1-9.
44. Badkoobeh, P., Parivar, K., Kal antar, S.M., Salabat, A. and Hosseini, S.D. 2013. Protective effect of nano-zinc oxide on reproductive system and fertility of ad-ult male Wistar rats following doxorubicin treatment. – Arak Med. Uni. J. 70: 1-9.
45. Bentley, G.E., Ubuka, T.and McGuire, NL. 2008. Gona-dotropin-inhibitory hormone and its receptor in the avian reproductive system. – J. Gen. Comp. Endocr-inol. 156: 34-43. [DOI:10.1016/j.ygcen.2007.10.003]
46. Bing, W., Weiyue, F., Meng, W., Tiancheng, W., Yiqun, G., Motao, Z., Hong, O., Junwen, S., Fang, Z., Yuliang, Z., Zhifang, C., Haifang, W. and Jing, W. 2008. Acute toxicological impact of nano- and subm-icro-scaled zinc oxide powder on healthy adult mice. – J. Nanopart. Res. 10:263–276. [DOI:10.1007/s11051-007-9245-3]
47. Boldet, D. 1999. New perspectives on iron: an introd-uction. – Am. J. Med. Sci. 318: 207- 212. [DOI:10.1016/S0002-9629(15)40625-1]
48. Braydich-stolle, L., Hussain, S., Schlager, J. and Hofmann, M. 2005. In vitro cytotoxity of nanopar-ticles in mammalian germ line stem celles. – J. Toxi-col. Sci. 88: 412-419. [DOI:10.1093/toxsci/kfi256]
49. Fatahian Dehkordi, R.A., Heidarnejad, S. and Ameri, A. 2015. ZnO nanoparticles effects on male rat gonad histology and its effect on blood serum sex factors. – J. Cell and Tissue. 6: 187-194.
50. Hentze, M.W. and Muckenthaler, M.V. 2004. Balancing acts molecular control of mammalian iron metabo-lism. – Cell 117: 285-97. [DOI:10.1016/S0092-8674(04)00343-5]
51. Junquiera, L. 2010. Basic histology. – Khosravi Publ-ication, Tehran, 478 pp.
52. Lan, Z. and Yang, W.X. 2012. Nanoparticles and sper-matogenesis: how do nanoparticles affect spermato-genesis and penetrate the blood-testis barrier. – J. Nanomed. 7: 579-596. [DOI:10.2217/nnm.12.20]
53. Mahmoudi, M., Sant, S., Wang, B. and Laurent, S. 2011. Superparamagnetic iron oxide nanoparticles (SPIO-Ns): development, surface modification and applicat-ions in chemotherapy. – Adv. Drug Del. Rev. 63:24-46 [DOI:10.1016/j.addr.2010.05.006]
54. Mahmoudi, M., Simchi, A. and Imani, M. 2010. A new approach for the in vitro identification of the cytoto-cxicity of superparamagnetic iron oxide nanoparti-cles. – J. Colloids Surf. B. 75: 300-309. [DOI:10.1016/j.colsurfb.2009.08.044]
55. Mohamed, M., Seweidy, E., Mervat, A., Sousou, A. and Hebatallah, A. 2010. Effect of prolonged intake of iron enriched diet on testicular functions of experime-ntal rats. – Nat. Sci. 2: 551-556.
56. Moslemi, N., Najafzadeh, H., Koochak, M. and Shahriary, A. 2013. Evaluation of lipid profile and oxidative stress indices in serum and liver of rat after iron oxide nanoparticle administration. – J. Kashan Uni. Med. Sci. 17:247-254.
57. Mozafari, Z., Parivar, K., Hayati Roodbari, N. and Ir-ani, Sh. 2016. Histopathology of epididymis in adult NMRI male rats treated with zinc oxide nanoparti-cles. – J. Med. Sci. Islamic Azad University 26: 142-148.
58. Naghavi, S., Samim, M., Abdin, M.Z., Ahmed, F.J., Maitra, A.N., Prashant, C.K. and Dinda, A.K. 2010. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. – Int. J. Nanomed. 5: 983-989.
59. Najafzade, H., Razijalali, M., Morovvati, H. and Taravati, F. 2010.Comparison prophylactic effect of silymarin and deferoxamine on iron overloadinduced heaptotoxicity in rat. – J. Med Toxicol. 6: 22-6. [DOI:10.1007/s13181-010-0030-9]
60. Nasri, S., Rezai-Zarchi, S., Kerishchi, P. and Sadeghi, S. 2015. The effect of iron oxide nanopaticles on sperm numbers and mobility in male mice. – Zahedan. J. Res. Med. Sci. 17: e2185.
61. Noori, A., Parivar, K., Modaresi, M., Messripour, M., Yousefi, M. and Amiri, H. 2011. Effect of magnetic iron oxide nanoparticles on pregnancy and testicular developpment of mice. – Afr. J. Biotechnol. 10: 1221-1227.
62. Seyedalipour, B., Barimani, N., Dehpour Jooybari, A., Hoseini, S.M. and Oshrieh, M. 2015. Histopath-ological evaluation of kidney and heart tissues after exposure to copper oxide nanoparticles in Mus mu-sculus. – J. Babol Uni. Med. Sci. 17: 44-50
63. Singh, N., Jenkins, G.J.S., Asadi, R. and Doak, S.H. 2010. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). – J. Nano Rev. 1: 1-15. [DOI:10.3402/nano.v1i0.5358]
64. Talebi, A.R., Khorsandi, L. and Moridian, M. 2013. The effect of zinc oxide nanoparticles on mouse sperma-togenesis. – J. Assit. Reprod. Gen. 30: 1203-1209. [DOI:10.1007/s10815-013-0078-y]
65. Taylor, U., Barchanski, A. and Garrels, W. 2012. Toxicity of gold nanoparticles on somatic and reprod-ucetive cells. – Med. Biol. 733: 125-133.
66. Tetley, T.D. 2007. Health effects of nanomaterials. – Biochem. Soc. J. 35: 527-531. [DOI:10.1042/BST0350527]
67. Teske, S.S., Detweiler, J. and Corrella, S. 2015. The Biomechanisms of metal and metal-oxide nanoparti-cles\' interactions with cells. – Int. J. Environ. Res. Publ. Health. 12: 1112–1134. [DOI:10.3390/ijerph120201112]
68. Thorek, D., Chen, A., Czupryna, J. and Tsourkas, A. 2006. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. – Health 34: 23-38. [DOI:10.1007/s10439-005-9002-7]
69. Valko, M., Leibfritz, D., Moncol, J., Cronin, M., Mazur, M. and Telser, J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. – Int. J. Biochem. Cell Biol. 39: 44-84. [DOI:10.1016/j.biocel.2006.07.001]
70. Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M. and Mazur, M. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. – Chem. Biol. Interact. 160: 1-40. [DOI:10.1016/j.cbi.2005.12.009]
71. Vargas-Arigony, A.L., Marqes-de-oliveira, I., Machado, M., Lilian-Bordin, D., Bergter, L., Pra, D. and Attonio-Pegas-Henriqes, J. 2013. The influence of micronutrients in cell culture: a reflection on viability and genomic stability. – Biomed. Res. Int. 2013: Article ID 597282, 22 pages.
72. Yamashita, K. and Yoshioka, Y. 2012. Safety assessment of nanomaterials in reproductive developmental filed. – J. Yakugaku Zasshi. 132: 331-335. [DOI:10.1248/yakushi.132.331]
73. Yousefi Babadi, V., Najafi, L., Najafi, A., Gholami, H., BeigiZarji, M.E. and Golzadeh, J. 2012. Evaluation of iron oxide nanoparticles effects on tissue and enzymes of liver in rats. – J. Pharma. Biomed. Sci. 23: 1-5.
74. Zanetti, S.R., Maldonado, E.N. and Aveldano M.I. 2007. Doxorubicin affects testicular lipids with long-chain (C18-C22) and very long-chain (C24-C32) polyunsa-turated fatty acids. – Cancer Res. 67: 6973-6980. [DOI:10.1158/0008-5472.CAN-07-0376]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2025 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb