Volume 7, Issue 1 (4-2020)                   nbr 2020, 7(1): 1-8 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hashemzadeh I, Tabatabaei S N, Ghaed Rahmati N, Amiri M, Bernatchez L. The analysis of the relationship between Lorestan cave barbs (Garra typhlops and Garra lorestanensis) and Garra gymnothorax populations in Dez and Karkheh River drainages. nbr. 2020; 7 (1) :1-8
URL: http://nbr.khu.ac.ir/article-1-3118-en.html
Department of Fisheries and Environmental Sciences, Faculty of Natural Resources and Earth Sciences, Shahr-e-Kord University, Shahr-e-Kord, Iranد , irajhashemzade@gmail.com
Abstract:   (688 Views)
The cave barb habitat is located in a Karst formation along the Sezar River. The springs on the walls of the Sezar River valley may provide a means for fish in surface waters to penetrate into the underground waters. These observations propose the probability for a migratory relationship between Garra gymnothorax in the Sezar River and the cave barbs (Garra typhlops and Garra lorestanensis). In addition, a variety of different body shapes including fusiform and slender body forms are observed among the cave fish. This phenotypical variation may be a sign of an unknown genetic diversity or could be attributed to the variable environmental conditions in different parts of the subterranean habitat. To clarify the situation, we used the sequences of mtDNA cytochrome oxidase subunit I and next generation sequencing method. The results showed that the fusiform and slender body shapes of G. typhlops and G. lorestanensis were not different with regard to their mtDNA and genomic compositions. Moreover, the analysis of the genomic their mtDNA and genomic compositions. Moreover, the analysis of the genomic showed that a limited level of gene flow (less than 3%) from G. gymnothorax probably existed in G. thyphlops. The low level of gene flow may be related to the lower fitness and adaptability of the surface dwelling fish to the subterranean life conditions.
 
 
Full-Text [PDF 1476 kb]   (200 Downloads)    
Type of Study: Original Article | Subject: Animal Biology
Received: 2018/04/17 | Revised: 2020/05/9 | Accepted: 2018/11/13 | Published: 2020/03/31 | ePublished: 2020/03/31

References
1. Alexander, D.H. & Lange, K. 2011. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinform. 12: 246. [DOI:10.1186/1471-2105-12-246]
2. Aljanabi, S.M. & Martinez, I. 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 25: 4692-4693. [DOI:10.1093/nar/25.22.4692]
3. Benestan, L., Gosselin, T., Perrier, C., Sainte‐Marie, B., Rochette, R. & Bernatchez, L. 2015. RAD genotyping reveals fine‐scale genetic structuring and provides powerful population assignment in a widely distributed marine species, the American lobster (Homarus americanus). Mol. Ecol. 24: 3299-3315. [DOI:10.1111/mec.13245]
4. Catchen, J., Hohenlohe, P.A., Bassham, S., Amores, A. & Cresko, W.A. 2013. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22: 3124-3140. [DOI:10.1111/mec.12354]
5. Coad, B. 2019. Freshwater Fishes of Iran. Available at: www.briancoad.com. Accessed on 14-12-2019.
6. Decker, J.E., McKay, S.D., Rolf, M.M., Kim, J., Alcalá, A.M., Sonstegard, T.S., Hanotte, O., Götherström, A., Seabury, C.M., Praharani, L. & Babar, M.E. 2014. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLOS Genet. 10: p.e1004254. [DOI:10.1371/journal.pgen.1004254]
7. Dunham, R.A. 2011. Aquaculture and fisheries biotechnology: genetic approaches. Cabi. Oxfordshire, UK, 494 pp. [DOI:10.1079/9781845936518.0000]
8. Farashi, A., Kaboli, M., Rezaei, H.R., Naghavi, M.R., Rahimian, H. & Coad, B.W. 2014. Reassessment of the taxonomic position of Iranocypris typhlops Bruun & Kaiser, 1944 (Actinopterygii, Cyprinidae). ZooKeys 374: 69-77. [DOI:10.3897/zookeys.374.6617]
9. Hallerman, E.M. 2003. Population genetics: principles and practices for fisheries scientists. American Fisheries Society, Bethesda, MD, 458 pp.
10. Hashemzadeh Segherloo, I., Abdoli, A., Eagderi, S., Esmaeili, H.R., Sayyadzadeh, G., Bernatchez, L., Hallerman, E., Geiger, M.F., Özulug, M., Laroche, J. & Freyhof, J. 2017. Dressing down: convergent reduction of the mental disc in Garra (Teleostei: Cyprinidae) in the Middle East. Hydrobiol. 785: 47-59. [DOI:10.1007/s10750-016-2902-8]
11. Hashemzadeh Segherloo, I., Bernatchez, L., Golzarianpour, K., Abdoli, A., Primmer, C.R. & Bakhtiary, M. 2012a. Genetic differentiation between two sympatric morphs of the blind Iran cave barb Iranocypris typhlops. J. Fish Biol. 81: 1747-1753. [DOI:10.1111/j.1095-8649.2012.03389.x]
12. Hashemzadeh Segherloo, I., Farahmand, H., Abdoli, A., Bernatchez, L., Primmer, C.R., Swatdipong, A., Karami, M. & Khalili, B. 2012b. Phylogenetic status of brown trout Salmo trutta populations in five rivers from the southern Caspian Sea and two inland lake basins, Iran: a morphogenetic approach. J. Fish Biol. 81: 1479-1500. [DOI:10.1111/j.1095-8649.2012.03428.x]
13. Hashemzadeh Segherloo, I., Ghaedrahmati, N. & Freyhof, J. 2016. Eidinemacheilus, a new generic name for Noemacheilus smithi Greenwood (Teleostei; Nemacheilidae). Zootaxa 4147: 466-476. [DOI:10.11646/zootaxa.4147.4.7]
14. Hashemzadeh Segherloo, I., Normandeau, E., Benestan, L., Rougeux, C., Coté, G., Moore, J.S., Ghaedrahmati, N., Abdoli, A. & Bernatchez, L. 2018. Genetic and morphological support for possible sympatric origin of fish from subterranean habitats. Sci. Rep. 8: 2909. [DOI:10.1038/s41598-018-20666-w]
15. Hubert, N., Hanner, R., Holm, E., Mandrak, N.E., Taylor, E., Burridge, M., Watkinson, D., Dumont, P., Curry, A., Bentzen, P. & Zhang, J. 2008. Identifying Canadian freshwater fishes through DNA barcodes. PLoS One 3: p.e2490. [DOI:10.1371/journal.pone.0002490]
16. Mousavi-Sabet, H. & Eagderi, S. 2016. Garra lorestanensis, a new cave fish from the Tigris River drainage with remarks on the subterranean fishes in Iran (Teleostei: Cyprinidae). Fish Taxa 1: 45-54.
17. Proudlove, G.S. 2006. Subterranean fishes of the world: an account of the subterranean (hypogean) fishes described up to 2003 with a bibliography 1541-2004. International Society for Subterranean Biology, 300 pp.
18. Sargeran, P., Bakhtiyari, M., Abdoli, A., Coad, B.W., Sarvi, K., Lishi, M.R. & Hajimoradloo, A. 2008. The endemic Iranian Cave-fish, Iranocypris typhlops: two taxa or two forms based on the mental disc? Zool. Middle East 44: 67-74. [DOI:10.1080/09397140.2008.10638290]
19. Wilkens, H. & Hüppop, K. 1986. Sympatric speciation in cave fishes? J. Zool. Syst. Evol. Res. 24: 223-230. [DOI:10.1111/j.1439-0469.1986.tb00630.x]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2020 All Rights Reserved | Nova Biologica Reperta

Designed & Developed by : Yektaweb