Volume 6, Issue 3 (10-2019)                   nbr 2019, 6(3): 284-291 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Cucho H, López Y, Caldeira C, Valverde A, Ordóñez C, Soler C. Comparison of three different staining methods for the morphometric characterization of Alpaca (Vicugna pacos) sperm, using ISAS® CASA-Morph system. nbr 2019; 6 (3) :284-291
URL: http://nbr.khu.ac.ir/article-1-3198-en.html
Universidad Nacional de San Antonio Abad Del Cusco
Abstract:   (8869 Views)

Sperm morphometry is a part of the semen analysis based on CASA technology and has shown a big role in the prediction of male fertility. This analysis implies the use of stain techniques, although it has been shown that staining can make dramatic changes in the cell morphometry in different species. The aim of the present work was to evaluate the differences in sperm morphometry in Alpaca, introduced by the use of different stain techniques. Single ejaculates from five adult alpacas were used. Samples were recovered by deferent duct deviation surgery technique. Three stain techniques (i.e. Hemacolor, Harri’s Henatoxylin and Diff-Quik) were evaluated. Morphometric analysis was done using ISAS® v1 CASA-Morph system, at 100x bright field objective magnification and a digital video camera with a final resolution of 0.08 µm/pixel. Almost 200 randomly selected cells were automatically analysed per sample and stain technique, considering several sperm-head and midpiece parameters regarding size and shape. Almost all of the parameters showed different levels of difference among the employed techniques. In general, the largest cell heads were the ones stained with Harri’s Hematoxylin and the smallest ones were the ones stained with Diff-Quik. The discriminant parameters used to differentiate between animals better were the head width, area and acrosome percentage. In conclusion, like in other species, alpaca sperm morphometry results were found to be sensitive to the applied stain technique. This implies the necessity of referring clearly the stain technique used in each case to perform comparisons between different works on the same species. None of the employed techniques was superior to the others. In addition, the method used to obtain the samples showed its usefulness and simplicity for repeated samplings.
 
 
 

Full-Text [PDF 961 kb]   (1496 Downloads)    
Type of Study: Original Article | Subject: Animal Biology
Received: 2018/10/31 | Revised: 2019/10/23 | Accepted: 2019/01/30 | Published: 2019/10/19 | ePublished: 2019/10/19

References
1. Aiping, B., Cungui, M., Russell, W.J., Zdzislaw, M.S., Alicja, B. and Yusuf, A.H. 2017. Anticancer actions of lysosomally targeted inhibitor, LCL521, of acid ceramidase. - PLoS ONE 12: 1-10. [DOI:10.1371/journal.pone.0177805]
2. Anna, K., Anna, R., Michal, G., Jerzy, S. and Grazyna, S. 2014. Structure and antioxidant activity of polyphenols derived from Propolis. - Molecules 19: 78-101. [DOI:10.3390/molecules19010078]
3. Benavente-Garcia, O. and Castillo, J. 2008. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. - J. Agric. Food. Chem. 56: 6185-6205. [DOI:10.1021/jf8006568]
4. Carlos, M.P., Carol, W., Arran, K. T., Peter, M., Graeme, C. and James, M. 2016. Antitumour activity of the novel flavonoid Oncamex in preclinical breast cancer models. - British J. Cancer 114: 905-916. [DOI:10.1038/bjc.2016.6]
5. Chang, H., Mi, M., Ling, W., Zhu, J., Zhang, Q., Wei, N.A., Zhou, Y., Tang, Y., Yu, X. and Zhang, T.I.N. 2010. Structurally related anticancer activity of flavonoids: involvement of reactive oxygen species generation. - J. Food Biochem. 34:1-14. [DOI:10.1111/j.1745-4514.2009.00282.x]
6. Chou, C.C., Yang, J.S, Lu, H.F., Ip, S.W., Lo, C., Wu, C.C., Lin, J.P., Tang, N.Y., Chung, J.G. and Chou, M.J. 2010. Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. - Arch. Pharm. Res. 33: 1181-1191. [DOI:10.1007/s12272-010-0808-y]
7. Elisa, R.C. Paolo, N. Francisco, M. and Iván L.M. 2017. The enzymatic sphingomyelin to ceramide conversion increases the shear membrane viscosity at the air-water interface. - Adv. Colloid Interface Sci. 247: 555-560. [DOI:10.1016/j.cis.2017.07.014]
8. Galati, G.O'. Brien, P.J. 2004. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. - Free Radic. Biol. Med. 37: 287-303. [DOI:10.1016/j.freeradbiomed.2004.04.034]
9. Geraldine, R., Christophe, S., Benoit, L., Hervé, S., Hamid, M., Hassan, E.L., Btaouri, S. and Dedieu, L.M. 2009. De novo ceramide synthesis is responsible for the anti-tumor properties of camptothecin and doxorubicin in follicular thyroid carcinoma. - Int. J. Biochem. Cell Biol. 41: 1165-1172. [DOI:10.1016/j.biocel.2008.10.021]
10. Guohua, H., Lei, Z., Yefei, R., Xiaoling, N. and Yihong Sun. 2014. Downstream carcinogenesis signaling pathways by green tea polyphenols: A translational perspective of chemoprevention and treatment for cancers. - Curr. Drug Metabol. 15: 14-22. [DOI:10.2174/1389200214666131211155613]
11. Han, D.H., Jeong, J.I.N.H. and Kim, J.H.E.E. 2009. Anti-proliferative and apoptosis induction activity of green tea polyphenols on human promyelocytic leukemia HL-60 cells. - Anticancer Res. 29: 1417-1421.
12. Jeong, J.H., An, J.Y., Kwon, Y.T., Rhee, J.G. and Lee, Y.J. 2009. Effects of low dose quercetin: cancer cell-specific inhibition of cell cycle progression. - J. Cell Biochem. 106: 73-82. [DOI:10.1002/jcb.21977]
13. Ki Duk, P., Sul, Gi, L., Sung, U.K.K., Sung Han, K., Won Suck, S., Sung Jin, C. and Do Hyeon, J. 2004. Anticancer activity of 3-O-acyl and alkyl-(-)-epicatechin derivatives. - Bioorg. Med. Chem. 14: 5189-5192.
14. Kim, M.E., Ha, T.K., Yoon, J.H. and Lee, J.S. 2014. Myricetin induces cell death of human colon cancer cells via BAX/BCL2-dependent pathway. - Anticancer Res. 34: 701-6.
15. Krishna, P.B., Burkhard, K., Andrea, H. and Christoph, A. 2013. Effective inhibition of acid and neutral ceramidases by novel B-13 and LCL-464 analogues. - Bioorg. Med. Chem. 21: 874-882. [DOI:10.1016/j.bmc.2012.12.014]
16. Kumar, G. and Baojun, X. 2018. Telomerase inhibitors from natural products and their anticancer potential. - Int. J. Mol. Sci. 19: 2-26.
17. Lafont, E., Dupont, R., Andrieu-Abadie, N., Okazaki, T. and Schulze-Osthoff, K. 2012. Ordering of ceramide formation and caspase-9 activation in CD95L-induced Jurkat leukemia T cell apoptosis. - Biochim. Biophys. Acta. 1821:684-693. [DOI:10.1016/j.bbalip.2012.01.012]
18. Leah, J. Siskind. 2005. Mitochondrial Ceramide and the Induction of Apoptosis. - J. Bioenerg. Biomembr. 37: 143-153. [DOI:10.1007/s10863-005-6567-7]
19. Lee, Y.K, Park, S.Y, Kim, Y.M., Lee, W.S. and Park, O.J. 2009. AMP kinase/cyclooxygenase-2 pathway regulates proliferation and apoptosis of cancer cells treated with quercetin. - Exp. Mol. Med. 41: 201-207. [DOI:10.3858/emm.2009.41.3.023]
20. Lin, C.F, Chen, C.L. andLin, Y.S. 2006. Ceramide in apoptotic signaling and anticancer therapy. - Curr. Med. Chem. 13:1609-1616. [DOI:10.2174/092986706777441986]
21. Lotito, S.B. and Frei, B. 2006. Consumption of Flavonoid-rich foods and increased plasma antioxidant capacity in human: cause, consequence or epiphenomenon. - Free Radic. Biol. Med. 41: 1727-1746. [DOI:10.1016/j.freeradbiomed.2006.04.033]
22. Maggioni, D., Nicolini, G., Rigolio, R., Biffi, L., Pignataro, L., Gaini, R. and Garavello, W. 2014. Myricetin and naringenin inhibit human squamous cell carcinoma proliferation and migration in vitro. - Nutr. Cancer 66: 1257-67. [DOI:10.1080/01635581.2014.951732]
23. Maurya P.K. and Rizvi, S.I. 2009. Protective role of tea catechins on erythrocytes subjected to oxidative stress during human aging. - Nat. Prod. Res. 23: 1072-1079. [DOI:10.1080/14786410802267643]
24. Mendosa-Wilson, A.M., and Glossman-Mitnik, D. 2006. Theoretical study of the molecular properties and chemical reactivity of (+) - catechin and (-)-epicatechin related to their antioxidant ability. - J. Mol. Struct. 761: 97-106. [DOI:10.1016/j.theochem.2006.01.001]
25. Mi Sun, K., Kyong Hoon, A., Seok Kyun, K., Hyung, J.J., Jung Eun, J., Jong Min, C., Kwang Mook, J., Sung Yun, J. and Dae Kyong, K. 2010. Hypoxia-induced neuronal apoptosis is mediated by de novo synthesis of ceramide through activation of serine palmitoyltransferase. - Cell. Signal. 22: 610-618. [DOI:10.1016/j.cellsig.2009.11.015]
26. Moretti, E. Mazzi, L., Terzuoli, G., Bonechi, C., Lacoponi, F., Martini, S., Rossi, C. and Collodel, G. 2012. Effect of quercetin, rutin, naringenin and epicatechin on lipid peroxidation on lipid peroxidation induced in human sperm. - Reprod. Toxicol. 34: 651-657. [DOI:10.1016/j.reprotox.2012.10.002]
27. Munawar, A., Farhan, S., Faqir, M., Anjum, M.A., Tabussam, T. and Muhammad Shakeel, B. 2017. Natural polyphenols: An overview. - Int. J. Food Prop. 20:1689-1699. [DOI:10.1080/10942912.2016.1220393]
28. Negrão, R., Costa, R., Duarte, D., Taveira, G.T., Mendanha, M. and Moura, L. 2010. Angiogenesis and inflammation signaling are targets of beer polyphenols on vascular cells. - J. Cell Biochem. 111: 1270-1279. [DOI:10.1002/jcb.22850]
29. Ogretmen, B. and Hannun, Y.A. 2004. Biologically active sphingolipids in cancer pathogenesis and treatment. - Nat. Rev. Cancer 4: 604-616. [DOI:10.1038/nrc1411]
30. Sak, K. 2014. Dependence of DPPH radical scavenging activity of dietary flavonoid quercetin on reaction environment. - Mini Rev. Med. Chem. 14: 494-504. [DOI:10.2174/1389557514666140622204037]
31. Shyi-Neng, L., Ya-Siou, H. and Chi-Tang, H. 2014. Flavonoid compositions and antioxidant activity of calamondin extracts prepared using different solvents. - J. Food Drug Anal. 22: 290-295. [DOI:10.1016/j.jfda.2014.01.020]
32. Smarajit, M., Aarifa, N., Nandita, M., Ritesh, P. and Tamal Kanti, G. 2019. Flavonoids green tea against oxidant stress and inflammation with related human diseases. - Clin. Nutr. Experi. 24: 1-14. [DOI:10.1016/j.yclnex.2018.12.004]
33. Soares, R., Balogh, G., Guo, S., Gartner, F., Russo, J. and Schmitt, F. 2004. Evidence for the notch signaling pathway on the role of estrogen in angiogenesis. - Mol. Endocrinolgy 18: 2333-2343. [DOI:10.1210/me.2003-0362]
34. Subhadra, R. 2016. Cancer, a preventable disease of the modern age-an overview from the Indian perspective. - Intl. J. Bioinf. Biol. Sci. 4: 1-4. [DOI:10.5958/2321-7111.2016.00001.9]
35. Teillet, F., Boumendjel, A., Boutonnat, J. and Ronot, X. 2008. Flavonoids as RTK inhibitors and potential anticancer agents. - Med. Res. Rev. 28: 715-745. [DOI:10.1002/med.20122]
36. Wang, H., Maurer, B.J., Reynolds, C.P. and Cabot, M.C. 2001. N-(4-hydroxyphenyl) retinamide elevates ceramide in neuroblastoma cell lines by coordinate activation of serine palmitoyltransferase and ceramide synthase. - Cancer Res. 61: 5102-5105.
37. Williams, R.J., Spencer, J.P. and Rice-Evans, C. 2004. Flavonoids: antioxidants or signalling molecules? - Free Radic. Biol. Med. 36: 838-849. [DOI:10.1016/j.freeradbiomed.2004.01.001]
38. Xingxuan, H., Arie, D., Shimon, G. and Edward, H.S. 2005. Simultaneous quantitative analysis of ceramide and sphingosine in mouse blood by naphthalene-2,3-dicarboxyaldehyde derivatization after hydrolysis with ceramidase. - Anal. Biochem. 340: 113-122. [DOI:10.1016/j.ab.2005.01.058]
39. Yasuhiro, H., Yasuhiro, H., Keishi, S., Nozomu, O. and Makoto, I. 2005. A sensitive and reproducible assay to measure the activity of glucosylceramide synthase and lactosylceramide synthase using HPLC and Fluorescence substrates. - Anal. Biochem. 345: 181-186. [DOI:10.1016/j.ab.2005.05.029]
40. Zhou, M., Diwu, Z., Panchuk-Voloshina, N. and Haugland, R.P. 1997. A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. - Anal. Biochem. 253: 62-68. [DOI:10.1006/abio.1997.2391]
41. Banaszewska, D., Czubaszek, M, Walczak-Jędrzejowska, R. and Andraszek, K. 2015. Morphometric dimensions of stallion sperm head depending on the staining method used. - Bull. Vet. Inst. Puławy 59: 263-270. [DOI:10.1515/bvip-2015-0039]
42. Barroso, G., Mercan, R., Ozgur, K., Morshedi, M., Kolm, P., Coetzee, K., Kruger, T. and Oehninger, S. 1999. Intra- and inter-laboratory variability in the assessment of sperm morphology by strict criteria: impact of semen preparation, staining techniques and manual versus computerized analysis. - Human Reprod. 14: 2036-2040. [DOI:10.1093/humrep/14.8.2036]
43. Bellastella, G., Cooper, T.G., Battaglia, M., Ströse, A., Torres, I., Hellenkemper, B., Soler, C. and Sinisi, A. 2010. Dimensions of human ejaculated spermatozoa in Papanicolau-stained seminal and swim-up smears obtained from the Integrated Sene Analysis System (ISAS®). - Asian J. Andrology 12: 871-879. [DOI:10.1038/aja.2010.90]
44. Bravo, P.W., Flores, D. and Ordóñez, C. 1997. Effect of repeated collection on semen characteristics of alpacas. Biol. Reprod.57: 520-524. [DOI:10.1095/biolreprod57.3.520]
45. Bravo, P.W., Pacheco, C., Quispe, G., Vilcapaza, L. and Ordóñez, C. 1999. Degelification of alpaca semen and the effect of dilution rates on artificial insemination outcome. - Arch. Andrology 43: 239-246. [DOI:10.1080/014850199262562]
46. Buendía, P., Soler, C., Paolicchi, F., Gago, C., Urquieta, B., Pérez-Sánchez, F., Bustos-Obregón, E. 2002. Morphometric caracterization and classification of alpaca sperm heads using the Sperm-Class Analyzer® computer aided system. - Theriogenology 57: 1207-1218. [DOI:10.1016/S0093-691X(01)00724-5]
47. Carretero, M.I., Fumuso, F.G., Miragaya, M.H., Herrera, C. and Giuliano, S.M. 2015. Effect of seminal plasma in Lama glama sperm. - Reprod. Fertility Develop. 27: 223. [DOI:10.1071/RDv27n1Ab267]
48. Carretero, M.I., Giuliano, S.M., Arratzoa, C.C., Santa cruz, R.C., Fumuso, F.G. and Neild, D.M. 2017. Comparison of two cooling protocols for llama semen: with and without collagenase and seminal plasma in the medium. - Andrologia 49: e12691. [DOI:10.1111/and.12691]
49. Casey, P.J., Gravance, C.G., Davis, R.O., Chabot, D.D. and Liu, I.K.M. 1997. Morphometric differences in sperm head dimensions of fertile and subfertile stallions. - Theriogenology 15: 575-582. [DOI:10.1016/S0093-691X(97)00015-0]
50. Cooper, T.G. 2012. Comment on the morphology of spermatozoa in air-dried seminal smears. - Int. J. Androl. 35: 105-106. [DOI:10.1111/j.1365-2605.2011.01207.x]
51. Eusteche, F. and Auger, J. 2003. Inter-individual variability in the morphological assessment of human sperm: effect of the level of experience and the use of standard methods. - Human Reprod. 18: 1018-1022. [DOI:10.1093/humrep/deg197]
52. Gago, C., Pérez-Sánchez, F., Yeung, C.H., Tablado, L., Cooper, T.G. and Soler, C. 1998. Standardization of sampling and staining methods for the morphometric evaluation of sperm heads in the Cynomolgus monkey (Macaca fascicularis) using computer-assisted image analysis. - Int. J. Androl. 21: 169-176. [DOI:10.1046/j.1365-2605.1998.00113.x]
53. Gago, C., Pérez-Sánchez, F., Yeung, C.H., Tablado, L., Cooper, T.G. and Soler, C. 1999. Morphological characterization of ejaculated Cynomolgus monkey (Macaca fascicularis) sperm. - Amer. J. Primatology 47: 105-115. https://doi.org/10.1002/(SICI)1098-2345(1999)47:2<105::AID-AJP2>3.3.CO;2-C [DOI:10.1002/(SICI)1098-2345(1999)47:23.3.CO;2-C]
54. Gago, C., Soler, C., Pérez-Sánchez, F., Yeung, C.H. and Cooper, T.G. 2000. Effect of Cetrorelix on sperm morphology during maturation trough the epididymis in the Cynomolgus macaque (Macaca fascicularis). - Amer. J. Primatology 51: 103-117. https://doi.org/10.1002/(SICI)1098-2345(200006)51:2<103::AID-AJP1>3.0.CO;2-9 [DOI:10.1002/(SICI)1098-2345(200006)51:23.0.CO;2-9]
55. García-Herreros, M., Aparicio, I.M., Barón, F.J., García-Marín, L.J. and Gil, M.C. 2006. Standardization of simple preparation, staining and sampling methods for automated sperm head morphometry analysis of boar spermatozoa. - Int. J. Androl. 29: 553-563. [DOI:10.1111/j.1365-2605.2006.00696.x]
56. Hardy, W.B. 1899. On the structure of cell protoplasm. - J. Physiol. 24: 158. [DOI:10.1113/jphysiol.1899.sp000755]
57. Kosova, G., Hotaling, J.M., Ohlander, S., Niederberger, C., Prins, G.S. and Ober, C. 2014. Variants in DPF3 and DSCAML1 are associated with sperm morphology. - Genetics 31: 131-137. [DOI:10.1007/s10815-013-0140-9]
58. Hidalgo, M., Rodríguez, I. and Dorado, J. 2006. Influence of staining and sampling procedures on goat sperm morphometry using the Sperm Class Analyzer. - Theriogenology 66: 996-1003. [DOI:10.1016/j.theriogenology.2006.02.039]
59. Hidalgo, M., Rodríguez, I., Dorado, J., Sanz, J. and Soler, C. 2005. Effect of simple size and staining methods on stallion sperm morphometry by the Sperm Class Analyzer. - Vet. Med-Czech 50: 24-32. [DOI:10.17221/5593-VETMED]
60. Landry, C., Geyer, L.B., Arakaki, Y., Uehara, T. and Palumbi, S.R. 2003. Recent speciation in the Indo-West Pacific: rapid evolution of gamete recognition and sperm morphology in cryptic species of sea urchin. - P. Roy. Soc. B.Biol. Sci. 270: 1839-1847. [DOI:10.1098/rspb.2003.2395]
61. Laruta-Limachi, F., Loza-Murguia, M.G. and Delgado-Callisaya, P.A. 2016. Microscopic evaluation of semen characteristics llama (Lama glama) cryopreserved two dilutors. - J. Selva Andina Anim. Sci. 3: 8-21.
62. Maree, L., du Plessis, S.S., Menkveld, R. and van der Horst, G. 2010. Morphometric dimensions of the human sperm head depend on the staining method used. - Human Reprod. 25: 1369-1382. [DOI:10.1093/humrep/deq075]
63. Maroto-Morales, A., García-Álvarez, O., Ramón, M., Martínez-Pastor, F., Fernández-Santos, M.R., Soler, J. and Garde, J.J. 2016. Current status and potential of morphometric sperm analysis. - Asian J. Andrology 18: 863-870. [DOI:10.4103/1008-682X.187581]
64. Meza, A., Caldeira, C., Valverde, A., Ordóñez, C., Ampuero, E., Cucho, H. and Soler, C. 2018. Sperm kinematic characterization of alpaca (Vicugna pacos L.) during reproductive season. - Reprod. Dom. Anim. 53: 1415-1423. [DOI:10.1111/rda.13284]
65. Morton, K.M., Thomson, P.C., Bailley, K., Evans, G., and Maxwell, W.M.C. 2010. Quality parameters for alpaca (Vicugna pacos) semen are affected by semen collection procedure. - Reprod. Dom. Anim. 45: 637-643. [DOI:10.1111/j.1439-0531.2008.01321.x]
66. Ordóñez, C., Ampuero, E., Cucho, H. and Chalco, G. 2012. Caracterización morfométrica de los espermatozoides de alpacas usando el integrated sperm analysis system (ISAS®). - Spermova 2: 67-68.
67. Panahi, F., Niasari-Naslaji, A., Seyedasgari, F., Ararooti, T., Razavi, K. and Moosavi-Movaheddi, A.A. 2017. Supplementation of tris-based extender with plasma egg yolk of six avian species and camel skim milk for chilled preservation of dromedary camel semen. - Anim. Reprod. Sci. 184: 11-19. [DOI:10.1016/j.anireprosci.2017.06.008]
68. Pérez-Sánchez, F., Tablado, L. and soler, C. 1998. Quantitative changes in sperm head morphology during passage through the male excurrent duct system of the rabbit. - Mol. Reprod. develop. 51: 203-209. https://doi.org/10.1002/(SICI)1098-2795(199810)51:2<203::AID-MRD10>3.0.CO;2-5 [DOI:10.1002/(SICI)1098-2795(199810)51:23.0.CO;2-5]
69. Ray, P.F., Metzler-Guillemain, C., Mitchell, M.J., Arnoult, C. and Coutton, C. 2017. Genetic abnormalities leading to qualitative defects of sperm morphology or function. - Clin. Genet. 91: 217-232. [DOI:10.1111/cge.12905]
70. Sancho, M., Pérez-Sánchez, F., Tablado, L., de Monserrat, J.J. and Soler, C. 1998. Computer assisted morphometric analysis of ram sperm heads: evaluation of different fixative techniques. - Theriogenology 50: 27-37. [DOI:10.1016/S0093-691X(98)00110-1]
71. Schwalm, A., Gauly, M., Erhardt, G., and Bergmann, M. 2007. Changes in testicular histology and sperm quality in llamas (Lama glama), following exposure to high ambient temperature. - Theriogenology 67: 1316-1323. [DOI:10.1016/j.theriogenology.2007.02.005]
72. Soler, C. and Cooper, T.G. 2016. Foreword to Sperm morphometrics today and tomorrow special issue in Asian Journal of Andrology. - Asian J. Andrology 18: 815-818. [DOI:10.4103/1008-682X.187582]
73. Soler, C., Pérez Sánchez, F., Schulze H., Bergmann, M., Oberpenning, F., Yeung, C-H. and Cooper, T.G. 2000. Objective evaluation of the morphology of human and epididymal sperm heads. - Int. J. Androl. 23: 77-84. [DOI:10.1046/j.1365-2605.2000.00211.x]
74. Soler, C., de Monserrat, J.J., Gutiérrez, R., Núñez, J., Núñez, M., Sancho, M., Pérez-Sánchez, F., and Cooper, T.G. 2003. Use of the Sperm-Class Analyser® for objective assessment of human sperm morphology. - Int. J. Androl. 26: 262-270. [DOI:10.1046/j.1365-2605.2003.00422.x]
75. Soler, C., Gadea, B., Soler, A.J., Fernández-Santos, M.R., Esteso, M.C., Núñez, J., Moreira, P.N., Núñez, M., Gutiérrez, R., Sancho, M. and Garde, J.J. 2005a. Comparison of three different staining methods for the assessment of epididymal red deer sperm morphometry by computerized analysis with ISAS®. - Theriogenology 64: 1236-1243. [DOI:10.1016/j.theriogenology.2005.02.018]
76. Soler, C., Gaßner, P., Nieschlag, E., de Monserrat, J.J., Gutiérrez, R., Sancho, M., Buendía, P., Álvarez, J.G., Behre, H.M. and Cooper, T.G. 2005b. Use of the integrated semen analysis system (ISAS®) for morphometrics analysis and its role in assisted reproduction technologies. - Revista Int. de Androl. 3: 112-119. [DOI:10.1016/S1698-031X(05)73257-X]
77. Soler, C., García-Molina, A., Sancho, M., Contell. J., Núñez, M. and Cooper, T.G. 2014a. A new technique for analysis of human sperm morphology in unstained cells from raw semen. - Reprod. Fertil. Dev. 28: 428-433. [DOI:10.1071/RD14087]
78. Soler, C., Sancho, M., García, A., Fuentes, M.C., Núñez, J. and Cucho, H. 2014b. Ejaculate fractioning effect on llama sperm head morphometry as assessed by the ISAS® CASA system. - Reprod. Dom. Anim. 49: 71-78. [DOI:10.1111/rda.12226]
79. Soler, C., Sancho, M., García-Molina, A., Núñez, J., Parráguez, V.H., Contell, J. and Bustos-Obregón, E. 2014c. Llama and alpaca comparative sperm head morphometric analysis. - J. Camelid Sci. 7: 48-58.
80. Soler, C., García- Molina, A., Contell, J., Silvestre, M.A. and Sancho, M. 2015. The Trumorph system: the new universal technique for the observation and analysis of the morphology of living sperm. - Anim. Reprod. Sci. 158: 1-10. [DOI:10.1016/j.anireprosci.2015.04.001]
81. Soler, C., Cooper, T.G., Valverde, A. and Yániz, J.L. 2016. Afterword to sperm morphometrics today and tomorrow special issue in Asian Journal of Andrology. - Asian J. Andorl. 18: 895-897. [DOI:10.4103/1008-682X.188451]
82. Soler, C., Contell, J., Bori, L., Sancho, M., García-Molina, A., Valverde, A. and Segarvall, J. 2017. Sperm kinematic, head morphometric and kinetic-morphometric subpopulations in the blue fox (Alopex lagopus). - Asian J. Andorl. 19: 154-159. [DOI:10.4103/1008-682X.188445]
83. Sun, F., Ko, E. and Martin, R.H. 2006. Is there a relationship between sperm chromosome abnormalities and sperm morphology? - Reprod. Biol. Endocrinol. 4: 1.
84. Valverde, A., Areán, H., Sancho, M., Contell, J., Yániz, J., Fernández, A. and Soler, C. 2016. Morphometry and subpopulation structure of Holstein bull spermatozoa: variations in ejaculates and cryopreservation straws. - Asian J. Andorl. 18: 851-857. [DOI:10.4103/1008-682X.187579]
85. World Health Organization (WHO). 2010. 'WHO Laboratory Manual for the Examination and Processing of Human Semen.' 5th edn (WHO: Geneva).
86. Yániz, J.L., Soler, C. and Santolaria, P. 2015. Computer assisted sperm morphometry in mammals: a review. - Anim. Reprod. Sci. 156: 1-12. [DOI:10.1016/j.anireprosci.2015.03.002]
87. Yániz, J.L., Capistrós, S., Vicente-Fiel, S., Hidalgo, C.I. and Santolaria, P. 2016. A comparative study of the morphometry of sperm head components in cattle, sheep, and pigs with a computer-assisted fluorescent method. - Asian J. Andorl. 18, 840-843. [DOI:10.4103/1008-682X.186877]
88. Yeung, C.H., Pérez-Sánchez, Soler, C., Poser, D., Kliesch, S. and Cooper, T.G. 1997. Maturation of human epididymal spermatozoa (from selected epididymides of prostatic carcinoma patients) with respect to their morphology and ability to undergo the acrosome reaction. - Human Reprod. Update 3: 205-213. [DOI:10.1093/humupd/3.3.205]
89. Adinarayana, K., Ellaiah, P. and Prasad, D.S. 2003. Purification and partial characterization of thermostable serine alkaline protease from a newly isolated Bacillus subtilis PE-11. - Aaps Pharmscitech. 4: 440-448 [DOI:10.1208/pt040456]
90. Anandharaj, M., Sivasankari, B., Siddharthan, N., Rani, R.P. and Sivakumar, S. 2016. Production, purification, and biochemical characterization of thermostable metallo-protease from novel Bacillus alkalitelluris TWI3 isolated from tannery waste. - Appl. Biochem. Biotechnol. 178: 1666-1686. [DOI:10.1007/s12010-015-1974-7]
91. Annamalai, N., Rajeswari, M.V. and Balasubramanian, T. 2014. Extraction, purification and application of thermostable and halostable alkaline protease from Bacillus alveayuensis CAS 5 using marine wastes. - Food Bioprod. Process. 92: 335-342. [DOI:10.1016/j.fbp.2013.08.009]
92. Bisht, S.P.S. and Panda, A.K. 2011. Isolation and identification of new lipolytic thermophilic bacteria from an Indian hot spring. - Int. J. Pharma. Bio. Sci. 2: 229-235. [DOI:10.4061/2011/452710]
93. Chan, Z., Wang, Z., Yi, Z. and Zeng, R. 2014. Haloalkaliphilic protease production by a newly isolated moderately halophilic bacterium Pontibacillus sp. SY-8. - Oceanogr. 2: 2. [DOI:10.4172/2332-2632.1000130]
94. De Oliveira, E.J., Rabinovitch, L., Monnerat, R.G., Passos, L.K.J. and Zahner, V. 2004. Molecular characterization of Brevibacillus laterosporus and its potential use in biological control. - Appl. Environ. Microbiol. 70: 6657-6664. [DOI:10.1128/AEM.70.11.6657-6664.2004]
95. Dorra, G., Ines, K., Imen, B.S., Laurent, C., Sana, A., Olfa, T., Pascal, C., Thierry J. and Ferid, L. 2018. Purification and characterization of a novel high molecular weight alkaline protease produced by an endophytic Bacillus halotolerans strain CT2. - Int. J. Biol. Macromol. 111: 342-351. [DOI:10.1016/j.ijbiomac.2018.01.024]
96. Edwards, S.G. and Seddon, B. 2001. Mode of antagonism of Brevibacillus brevis against Botrytis cinerea in vitro. - J. Appl. Microbiol. 91: 652-659. [DOI:10.1046/j.1365-2672.2001.01430.x]
97. El Hadj-Ali, N., Agrebi, R., Ghorbel-Frikha, B., Sellami-Kamoun, A., Kanoun, S. and Nasri, M. 2007. Biochemical and molecular characterization of a detergent stable alkaline serine-protease from a newly isolated Bacillus licheniformis NH1. - Enzyme Microb. Technol. 40: 515-523. [DOI:10.1016/j.enzmictec.2006.05.007]
98. Fekadu, A. 2015. Isolation and screening of protease enzyme producing bacteria from cheese at Dilla University, Ethiopia. - Int. J. Food Sci. Nutr. 4: 234-239. [DOI:10.11648/j.ijnfs.20150402.25]
99. Gupta, A. and Khare, S.K. 2007. Enhanced production and characterization of a solvent stable protease from solvent tolerant Pseudomonas aeruginosa PseA. - Enzyme Microb. Technol. 42: 11-16. [DOI:10.1016/j.enzmictec.2007.07.019]
100. Gupta, R., Beg, Q. and Lorenz, P. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. - Appl. Microbiol. Biotechnol. 59: 15-32. [DOI:10.1007/s00253-002-0975-y]
101. Hakim, A., Bhuiyan, F.R., Iqbal, A., Emon, T.H., Ahmed, J. and Azad, A.K. 2018. Production and partial characterization of dehairing alkaline protease from Bacillus subtilis AKAL7 and Exiguobacterium indicum AKAL11 by using organic municipal solid wastes. - Heliyon 4: e00646. [DOI:10.1016/j.heliyon.2018.e00646]
102. Harer, S.L., Bhatia, M.S. and Bhatia, N.M. 2018. Isolation, purification and partial characterization of thermostable serine alkaline protease from a newly isolated Bacillus thuringinsis-SH-II-1A. - Afr. J. Biotechnol. 17: 178-188. [DOI:10.5897/AJB2015.14831]
103. Hassi, M., El Guendouzi, S., Haggoud, A., David, S., Ibnsouda, S., Houari, A. and Iraqui, M. 2012. Antimycobacterial activity of a Brevibacillus laterosporus strain isolated from a Moroccan soil. - Braz. J. Microbiol. 43: 1516-1522. [DOI:10.1590/S1517-83822012000400036]
104. Jisha, V.N., Smitha, R.B., Pradeep, S., Sreedevi, S., Unni, K.N., Sajith, S., Priji, P., Josh, M.S. and Benjamin, S. 2013. Versatility of microbial proteases. - Adv. Enzyme Res. 1: 39. [DOI:10.4236/aer.2013.13005]
105. Kamran, A., Rehman, H.U., Qader, S.A.U., Baloch, A.H. and Kamal, M. 2015. Purification and characterization of thiol dependent, oxidation-stable serine alkaline protease from thermophilic Bacillus sp. - J. Genet. Eng. Biotechnol. 13: 59-64. [DOI:10.1016/j.jgeb.2015.01.002]
106. Kuberan, T., Sangaralingam, S. and Thirumalaiarasu, V. 2010. Isolation and optimization of protease producing bacteria from halophilic soil. - J. Biosci. Res. 1: 163-174.
107. Kumar, D. and Bhalla, T.C. 2005. Microbial proteases in peptide synthesis: approaches and applications. - Appl. Microbiol. Biotechnol. 68: 726-736. [DOI:10.1007/s00253-005-0094-7]
108. Kumar, S.S., Jithin, V., Jijeesh, V., Gayathri, V., Shiburaj, S., Haridas, M. and Sabu, A. 2018. Production and purification of alkaline protease from Exiguobacterium indicum TBG-PICH-001 isolated from soil samples of Pichavaram Estuary (Tamil Nadu). - IJMS. 47: 580-586.
109. Li, G.Y., Cai, Y.J., Liao, X.R. and Yin, J. 2011. A novel nonionic surfactant-and solvent-stable alkaline serine protease from Serratia sp. SYBC H with duckweed as nitrogen source: production, purification, characteristics and application. - J. Ind. Microbiol. Biotechnol. 38: 845-853. [DOI:10.1007/s10295-010-0855-x]
110. Liang, Y., Yesuf, J., Schmitt, S., Bender, K. and Bozzola, J. 2009. Study of cellulases from a newly isolated thermophilic and cellulolytic Brevibacillus sp. strain JXL. - J. Ind. Microbiol. Biotechnol. 36: 961-970. [DOI:10.1007/s10295-009-0575-2]
111. Maharaja, P., Nanthini, E., Swarnalatha, S. and Sekaran, G. 2018. Studies on the production of salt-tolerant alkaline protease isolated from Proteus mirabilis and its degradation of hyper-saline soak liquor. - Environ. Pollut. 439-45. [DOI:10.1007/978-981-10-5792-2_35]
112. Manni, L., Jellouli, K., Ghorbel-Bellaaj, O., Agrebi, R., Haddar, A., Sellami-Kamoun, A. and Nasri, M. 2010. An oxidant-and solvent-stable protease produced by Bacillus cereus SV1: application in the deproteinization of shrimp wastes and as a laundry detergent additive. - Appl. Biochem. Biotechnol. 160: 2308-2321. [DOI:10.1007/s12010-009-8703-z]
113. Marathe, S.K., Vashistht, M.A., Prashanth, A., Parveen, N., Chakraborty, S. and Nair, S.S. 2018. Isolation, partial purification, biochemical characterization and detergent compatibility of alkaline protease produced by Bacillus subtilis, Alcaligenes faecalis and Pseudomonas aeruginosa obtained from sea water samples. - J. Genet. Eng. Biotechnol. 16: 39-46. [DOI:10.1016/j.jgeb.2017.10.001]
114. Najafi, M.F., Deobagkar, D. and Deobagkar, D. 2005. Potential application of protease isolated from Pseudomonas aeruginosa PD100. - Electron. J. Biotechnol. 8: 79-85. [DOI:10.2225/vol8-issue2-fulltext-5]
115. Nguyen, T.T., Quyen, T.D. and Le, H.T. 2013. Cloning and enhancing production of a detergent-and organic-solvent-resistant nattokinase from Bacillus subtilis VTCC-DVN-12-01 by using an eight-protease-gene-deficient Bacillus subtilis WB800. - Microb. Cell Fact. 12: 79. [DOI:10.1186/1475-2859-12-79]
116. Padmapriya, B., Rajeswari, T., Noushida, E., Sethupalan, D.G. and Venil, C.K. 2011. Production of lipase enzyme from Lactobacillus spp. and its application in the degradation of meat. - World Appl. Sci. J. 12: 1798-1802.
117. Panda, A.K., Bisht, S. P.S., Panigrahi, A.K., De Mandal, S. and Kumar, N.S. 2016. Cloning and in silico analysis of a high-temperature inducible lipase from Brevibacillus. - Arabian J. Sci. Eng. 41: 2159-2170. [DOI:10.1007/s13369-015-1975-4]
118. Peña-Montes, C., González, A., Castro-Ochoa, D. and Farrés, A. 2008. Purification and biochemical characterization of a broad substrate specificity thermostable alkaline protease from Aspergillus nidulans. - Appl. Microbiol. Biotechnol. 78: 603. [DOI:10.1007/s00253-007-1324-y]
119. Rai, S.K., Konwarh, R. and Mukherjee, A.K. 2009. Purification, characterization and biotechnological application of an alkaline β-keratinase produced by Bacillus subtilis RM-01 in solid-state fermentation using chicken-feather as substrate. - Biochem. Eng. J. 45: 218-225. [DOI:10.1016/j.bej.2009.04.001]
120. Rai, S.K. and Mukherjee, A.K. 2011. Optimization of production of an oxidant and detergent-stable alkaline β-keratinase from Brevibacillus sp. strain AS-S10-II: Application of enzyme in laundry detergent formulations and in leather industry. - Biochem. Eng. J. 54: 47-56. [DOI:10.1016/j.bej.2011.01.007]
121. Rai, S.K., Roy, J.K. and Mukherjee, A.K. 2010. Characterisation of a detergent-stable alkaline protease from a novel thermophilic strain Paenibacillus tezpurensis sp. nov. AS-S24-II. - Appl. Microbiol. Biotechnol. 85: 1437-1450. [DOI:10.1007/s00253-009-2145-y]
122. Ramkumar, A., Sivakumar, N., Gujarathi, A.M. and Victor, R. 2018. Production of thermotolerant, detergent stable alkaline protease using the gut waste of Sardinella longiceps as a substrate: Optimization and characterization. - Sci. Rep. 8: 12442. [DOI:10.1038/s41598-018-30155-9]
123. Reese, E.T. and Maguire, A. 1969. Surfactants as stimulants of enzyme production by microorganisms. - Appl. Microbiol. 17: 242-245.
124. Seifzadeh, S., Hassan Sajedi, R. and Sariri, R. 2008. Isolation and characterization of thermophilic alkaline proteases resistant to sodium dodecyl sulfate and ethylene diamine tetraacetic acid from Bacillus sp. GUS1. - Iran. J. Biotechnol. 6: 214-221.
125. Singh, J. and Banal, S. 2013. Combinative impact of effectors on production of celluolytic enzyme from Brevibacillus parabrevis (MTCC 2208). - Eur. J. Exp. Biol. 3: 484-490.
126. Stoner, M.R., Dale, D.A., Gualfetti, P.J., Becker, T., Manning, M.C., Carpenter, J.F. and Randolph, T.W. 2004. Protease autolysis in heavy-duty liquid detergent formulations: effects of thermodynamic stabilizers and protease inhibitors. - Enzyme Microb. Technol. 34: 114-125. [DOI:10.1016/j.enzmictec.2003.09.008]
127. Suribabu, K., Govardhan, T.L. and Hemalatha, K. 2014. Application of partially purified-amylase produced by Brevibacillus borostelensis R1 on sewage and effluents of Industries. - Int. J. Curr. Microbiol. App. Sci. 3: 691-697.
128. Suribabu, K., Govardhan, T.L. and Hemalatha, K. 2014. Optimization of physical parameters of α-amylase producing Brevibacillus borostelensis R1 in submerged fermentation. - Int. J. Res. Eng. Tech. 3: 517-525. [DOI:10.15623/ijret.2014.0301087]
129. Tian, B., Li, N., Lian, L., Liu, J., Yang, J. and Zhang, K.Q. 2006. Cloning, expression and deletion of the cuticle-degrading protease BLG4 from nematophagous bacterium Brevibacillus laterosporus G4. - Arch. Microbiol. 186: 297-305. [DOI:10.1007/s00203-006-0145-1]
130. Wang, S., Lin, X., Huang, X., Zheng, L. and Zilda, D.S. 2012. Screening and characterization of the alkaline protease isolated from PLI-1, a strain of Brevibacillus sp. collected from Indonesia's hot springs. - J. Ocean Univ. China 11: 213-218. [DOI:10.1007/s11802-012-1845-6]
131. Junior, C., de Oliveira Vitoriano, J., Layza Souza da Silva, D., de Lima Farias M. and Bandeira de Lima Dantas, N. 2016. Water uptake mechanism and germination of Erythrina velutina seeds treated with atmospheric Plasma. - Sci. Rep. 6: 33722 DOI: 10.1038/srep33722. [DOI:10.1038/srep33722]
132. Apel, K. and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. - Annu. Rev. Plant Biol. 55: 373-399. [DOI:10.1146/annurev.arplant.55.031903.141701]
133. Božena, Š., Špatenka, P., Šerý, M., Vrchotová, N. and Hrušková, I. 2010. Influence of plasma treatment on wheat and oat germination and early growth. IEEE Trans. - Plasma Sci. 38: 2963-2968. [DOI:10.1109/TPS.2010.2060728]
134. Caverzan, A., Passaia, G., Rosa, S.B., Ribeiro, C.W., Lazzarotto, F. and Margis-Pinheiro, M. 2012. Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. - Genet. Mol. Biol. 35: 1011-1019. [DOI:10.1590/S1415-47572012000600016]
135. Chan S. W., Henderson I.R. & Jacobsen S.E. 2005. Gardening the genome: DNA methylation in Arabidopsis thaliana. - Nat. Rev. Genet. 6: 351-360. [DOI:10.1038/nrg1601]
136. Fatima, S., Mujib, A. and Tonk, D. 2015. NaCl amendment improves vinblastine and vincristine synthesis in Catharanthus roseus: a case of stress signalling as evidenced by antioxidant enzymes activities. - Plant Cell Tiss. Organ Cult. 121: 445-458. [DOI:10.1007/s11240-015-0715-5]
137. Gendrel, A.V., Black, M., Vaughn, M.W., Dedhia, N., McCombie, W.R., Lavine, K., Mittal, V., May, B., Kasschau, K.D., Carrington, J.C., Doerge, R.W., Colot, V. and Martienssen, R. 2004. Role of transposable elements in heterochromatin and epigenetic control. - Nature 430: 471-476. [DOI:10.1038/nature02651]
138. Henselová, M., Slováková, L., Martinka, M. and Zahoranová, A. 2012. Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. - Biologia 67: 490-497. [DOI:10.2478/s11756-012-0046-5]
139. Hoffmann, C., Berganza, C. and Zhang, J. 2013. Cold Atmospheric Plasma: methods of production and application in dentistry and oncology. - Med. Gas Res. 3: 21 [DOI:10.1186/2045-9912-3-21]
140. Jiafeng, J., Xin, H., Ling, L., Jiangang, L., Hanliang, Sh, Qilai, X., Renhong, Y. and Yuanhua, D. 2014. Effect of cold plasma treatment on seed germination and growth of wheat. - Plasma Sci. Tech. 16: 54-58.
141. Koul, M., Lakra, N.S., Chandra, R. and Chandra, S. 2013. Catharanthus roseus and prospects of its endophytes: a new avenue for production of bioactive metabolites. - Intl. J. Pharmaceut. Sci. Res. 4: 2705-2716.
142. Li, G. and Quiros, C.F. 2001. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. - Theor. Appl. Genet. 103: 455-461. [DOI:10.1007/s001220100570]
143. Li, S.W. and Xue, L. 2010. The interaction between H 2 O 2 and NO, Ca 2+, cGMP, and MAPKs during adventitious rooting in mung bean seedlings. -In Vitro Cell. Develop. Biol. Plant 46: 142-148. [DOI:10.1007/s11627-009-9275-x]
144. Ling, L., Jiafeng, J., Jiangang, L., Minchong, Sh., Xin, H., Hanliang SH. and Yuanhua D. 2014. Effects of cold plasma treatment on seed germination and seedling growth of soybean. - Sci. Rep. 4: 5859 Doi:10.1038/srep05859 [DOI:10.1038/srep05859]
145. Ling, L., Jiangang, L., Minchong, Sh, Jinfeng, H., Hanliang, Sh., Yuanhua, D. and Jiafeng, J. 2016. Improving seed germination and peanut yields by cold plasma treatment. - Plasma Sci. Tech.18: 1027-1033. [DOI:10.1088/1009-0630/18/10/10]
146. Maeder, M.L. Angstman, J.F., Richardson, M.E., Linder, S.J., Cascio, V.M., Tsai, S.Q., Ho, Q.H., Sander, J.D., Reyon, D., Bernstein, B.E., Costello, J.F., Wilkinson, M.F. and Joung, J.K. 2013. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. - Nat. biotechnol. 31: 1137-1142. [DOI:10.1038/nbt.2726]
147. Meiqiang, Y., Mingjing, H. and Tengcai, M. 2005. Stimulating Effects of seed treatment by magnetized plasma on tomato growth and yield. - Plasma Sci. Tech. 7: 3143-3147. [DOI:10.1088/1009-0630/7/6/017]
148. Meng, Y., Qu, G., Wang, T., Sun, Q., Liang, D. and Hu, Sh. 2017.Enhancement of germination and seedling growth of wheat seed using dielectric barrier discharge plasma with various gas sources. - Plasma Chem. Plasma Process. 37: 1105-1119 [DOI:10.1007/s11090-017-9799-5]
149. Robarts, D.W.H. and Wolfe, A.D. 2014.Sequence-related amplified polymorphism (SRAP) markers: A potential resource for studies in plant molecular biology. - Appl. Plant Sci. 2: 1-13. [DOI:10.3732/apps.1400017]
150. Sivachandiran, L. & Khacef, A. 2017. Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. - RSC Adv. 7: 1822-1832. [DOI:10.1039/C6RA24762H]
151. Souza, A.D., Garc'ıa, D., Sueiro, L. and Gilart F. 2014. Improvement of the seed germination, growth and yield of onion plants by extremely low frequency non-uniform magnetic fields. - Sci. Hort. 176: 63-69. [DOI:10.1016/j.scienta.2014.06.034]
152. Swanberg, A. and Dai, W. 2008. Plant Regeneration of Periwinkle (Catharanthus roseus) via Organogenesis. - Hortsci. 43: 832-836. [DOI:10.21273/HORTSCI.43.3.832]
153. Uthup, T.K., Ravindran, M., Bini K. and Thakurdas, S. 2011. Divergent DNA methylation patterns associated with abiotic stress in Hevea brasiliensis. - Mol. Plant 4: 996-1013. [DOI:10.1093/mp/ssr039]
154. Verma, A.K., Singh, R.R. and Singh, S. 2012. Improved alkaloid content in callus culture of Catharanthus roseus. - Bot. Serb. 36: 123-130.
155. Yin, M.Q., Huang, M.J., Ma, B.Z. and Ma, T.C. 2005. Stimulating effects of seed treatment by magnetized plasma on tomato growth and yield. - Plasma Sci. Tech. 7: 3143-3147. [DOI:10.1088/1009-0630/7/6/017]
156. Zargar, M., Farahani, F. and Nabavi, T. 2010. Hairy roots production of transgenic Catharanthus roseus L. plants with Agrobacterium rhizogenes under in vitro conditions. -J. Med. Plants Res. 4: 2199-2203.
157. Zhang, J.J., Oh Jo, J., Huynh, D.L., Kumar, Mongre, R., Ghosh, M., Singh, A., Lee, S.B., Sun Mok, Y., Hyuk, P. and Jeong, D.K. 2017. Growth-inducing effects of argon plasma on soybean sprouts via the regulation of demethylation levels of energy metabolism-related genes. - Sci. Rep. 7: 41917 DOI: 10.1038/srep41917 [DOI:10.1038/srep41917]
158. Zhou, R., Zhou, R., Zhang, X., Zhuang, J., Yang, S., Bazaka, K. and Ostrikov, K. 2016. Effects of Atmospheric-Pressure N2, He, Air, and O2 Microplasmas on Mung Bean Seed Germination and Seedling Growth. - Sci. Rep. 6: 32603 DOI: 10.1038/srep32603. M. and Kazemi Poshtmasari, H. 2009. Effect of trifluralin herbicide on polyploidy induction and chromosome changes in root meristem cells of fenugreek (Trigonella foenum-graecum L.). - J. Crop Breed. 2: 69-86. [DOI:10.1038/srep32603]
159. Amiri, S., Kazemitabaar, S.K., Ranjbar, G. and Azadbakht, M. 2010. The effect of trifluralin and colchicine treatments on morphological characteristics of Jimsnoweed (Datura stramonium L.). − Trakia J. Sci. 8: 47-61.
160. Bartels, P.G. and Hilton, J.L. 1973 Comparison of trifluralin, oryzalin, pronamide, propham, and colchicine treatments on microtubules. - Pestic. Biochem. Physiol. 3: 462-472. [DOI:10.1016/0048-3575(73)90072-2]
161. Bhaskaran, N., Shukla, S., Srivastava, J.K. and Gupta, S. 2010. Chamomile: an anti-inflammatory agent inhibits inducible nitric oxide synthase expression by blocking RelA/p65 activity. - Int. J. Mol. Med. 26: 935-940. [DOI:10.3892/ijmm_00000545]
162. Bijak, M., Saluk, J., Tsirigotis-Maniecka, M., Komorowska, H., Wachowicz, B., Zaczyńska, E., ... and Pawlaczyk, I.. 2013. The influence of conjugates isolated from Matricaria chamomilla L. on platelets activity and cytotoxicity. - Int. J. Biol. Macromol. 61: 218-229. [DOI:10.1016/j.ijbiomac.2013.06.046]
163. da Silva, G.M., Varella, T.L., Karsburg, I..V., Santana, T.N., de Carvalho, I.F., da Silva Añez, R. B., and da Silva, M.L. 2017. Cytogenetic characterization of species and hybrids of orchids of Cattleya genus. - Cytologia 82: 137-140. [DOI:10.1508/cytologia.82.137]
164. Das, M. 2014. Chamomile: medicinal, biochemical, and agricultural aspects. - CRC Press, New york. 295 pp. [DOI:10.1201/b17160]
165. Dhawan, O. and Lavania, U. 1996. Enhancing the productivity of secondary metabolites via induced polyploidy: a review. - Euphytica 87: 81-89. [DOI:10.1007/BF00021879]
166. Dijkstra, H. and Speckmann, G. 1980. Autotetraploidy in caraway (Carum carvi L.) for the increase of the aetheric oil content of the seed. - Euphytica 29: 89-96. [DOI:10.1007/BF00037252]
167. Ghani, A., Neamati, S.H., Azizi, M., Saharkhiz, M.J. and Farsi, M. 2014. Artificial autotetraploidy induction possibility of two Iranian endemic mint. - Not. Sci. Biol. 6: 185. [DOI:10.15835/nsb629129]
168. Hermsen, J.T. and De Boer, A. 1971. The effect of colchicine treatment on Solanum acaule and S. bulbocastanum; a complete analysis of ploidy chimeras in S. bulbocastanum. - Euphytica 20: 171-180. [DOI:10.1007/BF00056077]
169. Hoseini, H., Chehrazi, M., Nabati Ahmadi, D. and Mahmoudi Sarvestani, M. 2012. Ploidy induction in rosy periwinkle (Catharanthus roseus) and phenotype alteration (in Persian). Presented at the 1st National Conference on Solutions to Access Sustainable Development in Agriculture, Natural Resources and the Environment. Tehran, Iran.
170. Lavania, U. 2005. Genomic and ploidy manipulation for enhanced production of phyto-pharmaceuticals. - Plant Genet. Resour. 3: 170-177. [DOI:10.1079/PGR200576]
171. Lavania, U. and Srivastava, S. 1991. Enhanced productivity of tropane alkaloids and fertility in artificial autotetraploids of Hyoscyamus niger L. - Euphytica 52: 73-77.
172. Masterson, J. 1994. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. - Science 264: 421-423. [DOI:10.1126/science.264.5157.421]
173. Omidbaigi, R., Mirzaee, M., Hassani, M. and Sedghi Moghadam, M. 2012. Induction and identification of polyploidy in basil (Ocimum basilicum L.) medicinal plant by colchicine treatment. - Int. J. Plant Prod. 4: 87-98.
174. Omidbaigi, R., Yavari, S., Hassani, M.E. and Yavari, S. 2010. Induction of autotetraploidy in dragonhead (Dracocephalum moldavica L.) by colchicine treatment. - J. Fruit Ornam. Plant Res. 18: 23-35.
175. Raev, R., Jordanov, R. and Zheljazkov, V. 1996. Induced polyploidy in lavender. - Acta Hortic. 426: 561-572. [DOI:10.17660/ActaHortic.1996.426.61]
176. Roy, A., Leggett, G. and Koutoulis, A. 2001. In vitro tetraploid induction and generation of tetraploids from mixoploids in hop (Humulus lupulus L.). - Plant Cell Rep. 20: 489-495. [DOI:10.1007/s002990100364]
177. Rubuluza, T., Nikolova, R., Smith, M. and Hannweg, K. 2007. In vitro induction of tetraploids in Colophospermum mopane by colchicine. - S. Africa J. Bot. 73: 259-261. [DOI:10.1016/j.sajb.2006.12.001]
178. Saharkhiz, M. 2007. The effects of some environmental factors and ploidy level on morphological and physiological characteristics of feverfew (Tanacetum parthenium L.) medicinal ornamental plant. Ph.D thesis, Tarbiat Modares University,Tehran. Iran.
179. Salma, U., Kundu, S. and Mandal, N. 2017. Artificial polyploidy in medicinal plants: Advancement in the last two decades and impending prospects. - J. Crop Sci. Biotechnol. 20: 9-19. [DOI:10.1007/s12892-016-0080-1]
180. Sattler, M.C., Carvalho, C.R. and Clarindo, W.R. 2016. The polyploidy and its key role in plant breeding. - Planta 243: 281-296. [DOI:10.1007/s00425-015-2450-x]
181. Seidler-Lozykowska, K. 2003. Determination of the ploidy level in chamomile (Chamomilla recutita (L.) Rausch.) strains rich in α-bisabolol. - J. Appl. Gent. 44: 151-155.
182. Singh, O., Khanam, Z., Misra, N. and Srivastava, M.K. 2011. Chamomile (Matricaria chamomilla L.): An overview. - Pharmacogn Rev. 5: 82-95. [DOI:10.4103/0973-7847.79103]
183. Srivastava, J.K., Shankar, E. and Gupta, S. 2010. Chamomile: A herbal medicine of the past with bright future. - Mol. Med. Rep. 3: 895-901. [DOI:10.3892/mmr.2010.377]
184. Tayel, A.A. and El-Tras, W.F. 2009. Possibility of fighting food borne bacteria by egyptian folk medicinal herbs and spices extracts. - J. Egypt Public Health Assoc. 84: 21-32.
185. te Beest, M., Le Roux, J.J., Richardson, D.M., Brysting, A.K. and Suda, J., Kubešová, M. and Pyšek, P. 2012. The more the better? The role of polyploidy in facilitating plant invasions. - Ann. Bot. 109: 19-45. [DOI:10.1093/aob/mcr277]
186. Vyas, P., Bisht, M.S., Miyazawa, S-I., Yano, S. and Noguchi, K., Terashima, I.and Funayama-Noguchi, S. 2007. Effects of polyploidy on photosynthetic properties and anatomy in leaves of Phlox drummondii. - Funct. Plant Biol. 34: 673-682. [DOI:10.1071/FP07020]
187. Warner, D.A. and Edwards, G.E. 1993. Effects of polyploidy on photosynthesis. - Photosyn. Res. 35: 135-147. [DOI:10.1007/BF00014744]
188. Wendel, J.F. 2015. The wondrous cycles of polyploidy in plants. - Am. J. Bot. 102: 1753-1756. [DOI:10.3732/ajb.1500320]
189. Zhang, X., Liang, G., Yan, Y., Yu, Y., Yang, G. and Yang, T. 2000. Rapid propagation and polyploidy induction in Melaleuca alternifolia. - J. Southwest Agricul. Univ. 22:507-509.‌
190. Bagheri, A., Maassoumi, A.A. and Vitek, E. 2018. Rediscovery of Astragalus saganlugensis (Fabaceae, Galegeae) in Iran after 184 years. - Phytotaxa 350: 297-299. [DOI:10.11646/phytotaxa.350.3.9]
191. Barneby, R.C. 1964. Atlas of north American Astragalus. - Memoirs of the New York Botanical Garden 13: 1-1188.
192. Blattner, F.R. 2006. Multiple intercontinental dispersals shaped the distribution area of Hordeum (Poaceae). - New Phytol. 169: 603-614. [DOI:10.1111/j.1469-8137.2005.01610.x]
193. Blattner, F.R. and Kadereit, J.W. 1995. Three intercontinental disjunctions in Papaveraceae subfamily Chelidonioideae: Evidence from chloroplast DNA. - Plant Syst. Evol. [Suppl.] 9: 147- 157. [DOI:10.1007/978-3-7091-6612-3_13]
194. Candolle, A.P. de 1825. - Prodromus systematis naturalis regni vegetabilis. 2. 281 pp. Paris.
195. Chamberlain, D.P. and Matthews, V.A. 1970. Astragalus L. - In: Davis, P.H. (ed.) Flora of Turkey and the East Aegean Islands 3: 49-254. - Edinburgh University Press. Edinburgh.
196. Friesen, N. and Blattner, F.R. 2000. RAPD analysis reveals geographic differentiations within Allium schoenoprasum L. (Alliaceae). - Plant Biology 2: 297-305. [DOI:10.1055/s-2000-3698]
197. GBIF 2018. Global Biodiversity Information Facility. http://www.gbif.org [accessed 18 Nov 2018].
198. Ghahremaninejad, F. 2015. Notes about Astragalus (Leguminosae) in Iran. - Ann. Naturhist. Mus. Wien 117B: 117: 279-281.
199. Ghahremaninejad, F., Bagheri, A. and Maassoumi, A.A. 2012. Two new species of Astragalus L. sect. Incani DC. (Fabaceae) from the Zanjan province (Iran). - Adansonia 34: 59-65. [DOI:10.5252/a2012n1a6]
200. Hijmans, R.J., Guarino, L., Bussink, C., Mathur, P., Cruz, M., Barrantes, I. and Rojas, E. 2005. DIVA-GIS, Version 5: A geographic information system for the analysis of biodiversity data [Software]. International Plant Genetic Resources Institute (IPGRI): Available from: http://diva-gis.org.
201. Kazempour Osaloo, S., Maassoumi, A.A. and Murakami, N. 2003. Molecular systematic of the genus Astragalus L. (Fabaceae): Phylogenetic analyses of nuclear ribosomal DNA internal transcribed spacers and chloroplast gene ndhF sequences. - Plant Syst. [DOI:10.1007/s00606-003-0014-1]
202. Evol. 242: 1-32.
203. Kazempour Osaloo, S., Maassoumi, A.A. and Murakami, N. 2005. Molecular systematics of the Old World Astragalus (Fabaceae) as inferred from nrDNA ITS sequence data. - Brittonia 57: 367-381. [DOI:10.1663/0007-196X(2005)057[0367:MSOTOW]2.0.CO;2]
204. Luna-Cavazos, M. and Bye, R. 2011. Phytogeographic analysis of the genus Datura (Solanaceae) in continental Mexico. - Rev. Mex. Biodiv. 82: 977-988. [DOI:10.22201/ib.20078706e.2011.3.720]
205. Maassoumi, A.A. 1988. Revision of Astragalus L. sect. Hypoglottidei DC. in Iran. - Mitt. Bot. Staatssamml. Münch. 27: 125-133.
206. Maassoumi, A.A. 1989. The genus Astragalus in Iran, vol. 2. 386 pp. - Research Institute of Forests and Rangelands. Tehran.
207. Maassoumi, A.A. 2018. Fabaceae: Astragalus III. - In: Assadi et al. (eds.) Flora of Iran, No. 145. 766 pp. - Research Institute of Forests and Rangelands, Tehran.
208. Mahmoodi, M., Maassoumi, A.A. and Jalili A. 2012. Distribution patterns of Astragalus in the Old World based on some selected sections. - Rostaniha 13: 39- 56.
209. Podlech, D. 1990. Die Typifizierung der altweltlichen Sektionen der Gattung Astragalus L. (Leguminosae). - Mitt. Bot. Staatssamml. Münch. 29: 478.
210. Podlech, D. and Zarre, Sh. (with collaboration of Ekici, M., Maassoumi, A.A. and Sytin, A.). 2013. A taxonomic revision of the genus Astragalus L. (Leguminosae) in the Old World. Vols. 1-3. 2439 pp. Naturhistorisches Museum, Wien.
211. Podlech, D., Zarre, Sh., Maassoumi, A.A., Ekici, M. and Sytin, A. 2010. Papilionaceae VI: Astragalus L. IV & Barnebyella Podlech. - In: Rechinger K.H. (ed.) Flora Iranica, No. 178. 430 pp. - Akad. Druck- und Verlagsanstalt, Graz.
212. USDA, NRCS. 2018. The PLANTS Database (http://plants.usda.gov,). National Plant Data Team, Greensboro, NC 27401-4901 USA. [Accessed: 10 Nov. 2018].
213. Wojciechowski, M.F., Sanderson, M.J., Baldwin, B.G. and Donoghue, M.J. 1993. Monophyly of aneuploid Astragalus (Fabaceae): Evidence from nuclear ribosomal DNA internal transcribed spacer sequences. - Am. J. Bot. 80: 711-722. Xu, L. and Podlech, D. 2010. Astragalus L. - In: Wu, Z.Y. and Raven, P.H. (eds.) Flora of China 10: 328- 453. - Harvard University Herbaria. [DOI:10.1002/j.1537-2197.1993.tb15241.x]
214. Zohary, M. 1973. Geobotanical foundations of the Middle East. - Fischer, Stuttgart, 340 pp. Arjmandi, A.A., Sharghi, H.R., Memariani, F. and Joharchi, M.R. 2016. Rosa kokanica (Rosaceae) in Binalood Mountains: A new record for the flora of Iran. - Iranian J. Bot. 22: 11-15.
215. Aydani, M., Joharchi, M.R. and Ghahremaninejad, F. 2006. A new record, Galatella litvinovii (Asteraceae) from Iran, N Khorassan province. - Iranian J. Bot. 12: 203-204.
216. Barkworth, M.E. and Everett, J. 1987. Evolution in the Stipeae: Identification and relationships of its monophyletic taxa. In: Sodestrom, T.R., Hilu, K.W., Campbell, C.S., Barkworth, M.E. (eds.), Grass Systematics and Evolution. - Smithsonian Institution Press, Washington, D.C. pp: 251-264.
217. Bor, N.L. 1970. Gramineae. - In: K.H. Rechinger (ed.), Flora Iranica. No.70. - Akademische Druck-u. Verlagsanstalt, Graz. 573 pp + 72 Tab.
218. Chen, T. and Ehrendorfer, F. 2011. Galium. - In: Wu, Z.Y. and Hong, D.Y. (eds.) Flora of China, vol. 19: 104-141. - Beijing Science Press & Missouri Botanical Garden Press, St. Louis.
219. Ehrendorfer, F., Schönbeck-Temesy, E., Puff, C. and Rechinger, W. 2005. Rubiaceae. - In: Rechinger, K.H. (ed.). Flora Iranica. No. 176. - Akademische Druck-u. Verlagsanstalt, Graz.
220. Farsi, M., Behroozian, M., Vaezi, J., Joharchi, M.R. and Memariani, F. 2013. The evolution of Dianthus polylepis complex (Caryophyllaceae) inferred from morphological and nuclear DNA sequence data: one or two species? - Plant Syst. Evol. 299: 1419-1431. [DOI:10.1007/s00606-013-0804-z]
221. Freitag, H. 1985. The genus Stipa (Gramineae) in southwest and south Asia. - Notes Roy. Bot. Gard. Edinburgh 42: 355-489.
222. Fritsch, R.M. and Maroofi, H. 2010. New species and new records of Allium L. (Alliaceae) from Iran. - Phyton (Horn, Austria) 50: 1-26.
223. Gahremaninejad, F., Joharchi, M.R. and Vitek, E. 2010. New plant records for Khorassan province, Iran, III. - Ann. Naturhist. Mus. Wien 111B: 135-148.
224. Gahremaninejad, F., Joharchi, M.R. and Vitek, E. 2012. New plant records for Khorassan province, Iran, V, with complementary notes to its flora. - Ann. Naturhist. Mus. Wien 114B: 59-94.
225. IUCN. 2016. Guidelines for Using the IUCN Red List Categories and Criteria. Version 12. Prepared by the Standards and Petitions Subcommittee. Available from: http://www.iucnredlist.org/ documents/Red List Guidelines.pdf.
226. Joharchi, M.R. and Akhani, H. 2006. Notes on the flora of Iran 6: Eight new plant records from Iran collected from Khorassan and Golestan provinces (NE Iran). - Rostaniha 7, suppl. 2: 131-141.
227. Joharchi, M.R., Gahremaninejad, F. and Vitek, E. 2007. New plant records for Khorassan province, Iran [II]. - Ann. Naturhist. Mus. Wien 108B: 277-301.
228. Joharchi, M.R. and Nejati, M. 2015. A new record of Primula L. (Primulaceae) from Iran. - Iranian J. Bot. 21: 10-12.
229. Memariani, F., Joharchi, M.R. and Khassanov, F.O. 2007. Allium L. subgen. Rhizirideum sensu lato in Iran, two new records and a synopsis of taxonomy and phytogeography. - Iranian J. Bot. 13: 12-20.
230. Memariani, F. and Arjmandi, A.A. 2013. Festuca karatavica (Poaceae), a new grass record for the flora of Iran. - Iranian J. Bot. 19: 57-61.
231. Memariani, F., Zarrinpour, V. and Akhani, H. 2016a. A review of plant diversity, vegetation and phytogeography of the Khorassan-Kopet Dagh floristic province in the Irano-Turanian region (northeastern Iran - southern Turkmenistan). - Phytotaxa 249: 8-30. [DOI:10.11646/phytotaxa.249.1.4]
232. Memariani, F., Akhani, H. and Joharchi, M.R. 2016b. Endemic plants of the Khorassan-Kopet Dagh floristic province in the Irano-Turanian region: diversity, distribution patterns and conservation status. - Phytotaxa 249: 31-117. [DOI:10.11646/phytotaxa.249.1.5]
233. Memariani, F., Joharchi, M.R. and Akhani, H. 2016c. Plant diversity of Ghorkhod Protected Area, NE Iran. - Phytotaxa 249: 118-158. [DOI:10.11646/phytotaxa.249.1.6]
234. Mittermeier, R.A., Turner, W.R., Larsen, F.W., Brooks, T.M. and Gascon, C. 2011. Global biodiversity conservation: the critical role of hotspots. - In: Zachos, F.E. and Habel, J.C. (eds.). Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas. - Springer, Heidelberg. pp: 3-22. [DOI:10.1007/978-3-642-20992-5_1]
235. Nobis, M, Nowak, A. and Nobis, A. 2013. Stipa zeravshanica sp. nov. (Poaceae), an endemic species from rocky walls of the western Pamir Alai Mountains (Middle Asia). - Nord. J. Bot. 31: 666-675. [DOI:10.1111/j.1756-1051.2013.00184.x]
236. Nobis, M. 2014. Taxonomic revision of the Central Asian Stipa tianschanica complex (Poaceae) with particular reference to the epidermal micromorphology of the lemma. - Folia Geobot. 49: 283-308. [DOI:10.1007/s12224-013-9164-2]
237. Nobis, M, Nobis, A., Klichowska, E., Nowak, A., Nowak, S. and Gudkova, P.D. 2016. Stipa dickorei sp. nov. (Poaceae), three new records and a checklist of feather grasses of China. - Phytotaxa 267: 29-39. [DOI:10.11646/phytotaxa.267.1.3]
238. Nobis, M, Nowak, A., Nobis, A., Nowak, S., Zabicka, J. and Zabicki, P. 2017. Stipa ×fallax (Poaceae: Pooideae: Stipeae), a new natural hybrid from Tajikistan, and a new combination in Stipa drobovii. - Phytotaxa 303: 141-154. [DOI:10.11646/phytotaxa.303.2.4]
239. Pobedimova, E.G. 2000. Galium. - In: Komarov, V.L. (ed.). Flora of the U.S.S.R., vol. 23: 272-361. - Botanicheskii Institut (Akademiia Nauk SSSR), Moscow & Leningrad.
240. Sennikov, A.N. 2016. The plant world of the Khorassan-Kopet Dagh Floristic Province: A tribute to Eskandar Firouz. - Phytotaxa 249: 5-7. [DOI:10.11646/phytotaxa.249.1.3]
241. Thiers, B. 2018. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. Available from: http://sweetgum.nybg.org/science/ih/ (accessed 15 December 2018).
242. Tzvelev, N.N. 1976. Zlaki SSSR [Grasses of the Soviet :union:]. - Nauka, Leningrad. 778 pp.
243. Yang, L.-E., Meng, Y., Peng, D.-L., Nie, Z.-L. and Sun, H. 2018. Molecular phylogeny of Galium L. of the tribe Rubieae (Rubiaceae) - emphasis on Chinese species and recognition of a new genus Pseudogalium. - Mol. Phylogen. Evol. 126: 221-232. [DOI:10.1016/j.ympev.2018.04.004]
244. Chamberlain, D.F. 1975. Scorzonera incisa DC. - In: Davis, P.H. (ed.), Flora of Turkey and East Aegean Islands 5: 639, 644, 645 & 649. - Univ. Press, Edinburgh.
245. Dyanat-Nejad, H., Mozaffarian, V. and Safavi, S.R. 1998. Scorzonera Koelpinoides (Asteraceae), a new record for the flora of Iran. - Iranian J. Bot. 7: 265-267.
246. Lipschits, S.Yu. 1964. Scorzonera L. - In: Bobrov, E.G. and Tzvelev N.N. (eds.), Flora of the USSR 29: 31-144. - Botanical Institute of the Academy of Science of the USSR Press, Moscow, Leningrad.
247. Rechinger, K.H. 1955. Scorzonera L. Symbolae Afghanicae 2: 19-202. - Akademische Druck- u. Verlagsanstalt, Graz.
248. Rechinger, K.H. 1977. Scorzonera L. - In: Rechinger, K.H. (ed.), Flora Iranica 122: 16-79. - Akademische Druck- u. Verlagsanstalt, Graz.
249. Safavi, S.R. 2004. A new record and an interesting species of the genus Scorzonera L. from Iran. - Iranian J. Bot. 10: 159-162.
250. Safavi, S.R. 2006a. A new species of Scorzonera (Asteraceae) from Khorasan, Iran. - Nord. J. Bot. 24: 261-264. [DOI:10.1111/j.1756-1051.2004.tb00840.x]
251. Safavi, S.R. 2006b. Notes on the genera Scorzonera L. and Scolymus L. (Asteraceae) in Iran.- Iranian J. Bot. 12: 59-62.
252. Safavi, S.R., Naseh, Y., Jafari, E., Tavakoli, Z. and Heydarnia, N. 2013. Scorzonera L. - In: Assadi, M., Maassoumi, A.A., Mozaffarian, V. and Safavi, S.R. (eds.), Flora of Iran (Asteraceae, tribe Cichorieae) 70: 352-442. - Research Institute of Forests & Rangelands Press, Tehran, Iran.
253. Safavi, S.R. 2016. A new species of Scorzonera L. (Asteraceae) from Natanz, Iran. - Iranian J. Bot. 22: 1-5.
254. Akgül, G., Ketenoğlu, O., Pınar, N. M. and Kurt, L. 2008. Pollen and seed morphology of the genus Marrubium (Lamiaceae) in Turkey. - Ann. Bot. Fennici 45: 1-10. [DOI:10.5735/085.045.0101]
255. Bendiksby, M. Thorbek, L., Scheen, A.-C., Lindqvist, C. and Ryding, O. 2011. An updated phylogeny and classification of Lamiaceae subfamily Lamioideae. - Taxon 60: 471-484. [DOI:10.1002/tax.602015]
256. Bentham, G. 1832-1836. Labiatarum genera et species. - James Ridgway & Sons, London, 582 pp.
257. Bojnanský, V. and Fargašová, A. 2007. Atlas of seeds and fruits of central and east European flora: the Carpathian Mountains region. - Springer Science & Business Media, Netherlands, 1046 pp.
258. Davis, P.H. 1982. Flora of Turkey and east Aegean islands 7. Edinburgh University Press, Edinburgh, 964 pp.
259. Demissew, S. and Harley, M.M. 1992. Trichome, seed surface and pollen characters in Stachys, Lamioideae (Labiatae) in tropical Africa. In: Harley RM, Reynolds T (eds) advances in Labiatae science. - Royal Botanic Gardens, Kew. 149-166.
260. Eyvazadeh Khosroshahi, E. and Salmaki, Y. 2018. Nutlet micromorphology and its systematic implications in Phlomoides Moench. - Nova Biol. Rep. 5: 82-94. [DOI:10.29252/nbr.5.1.82]
261. Guerin, G. R. 2005. Nutlet morphology in Hemigenia R. BR. Microcorys R. BR. (Lamiaceae). - Pl. Syst. Evol. 254: 49-68. [DOI:10.1007/s00606-005-0311-y]
262. Harley, R.M., Atkins, S., Budantsev, A.L., Cantino, P.D., Conn, B.J., Grayer, R., Harley, M.M., De Kok, R., Krestovskaya, T.V., Morales, R., Paton, A.J., Ryding, O. and Upson, T. 2004. Labiatae. - in: Kubitzki, K. & Kadereit, J.W. (eds.), The families and genera of vascular plants, 7: 167-275 - Berlin, Heidelberg: Springer. [DOI:10.1007/978-3-642-18617-2_11]
263. Hassan, S. and Al-Thobaiti, A. 2015. Morphological nutlet characteristics of some Lamiaceae taxa in Saudi Arabia and their taxonomic significance. - Pak. J. Bot. 47: 1969-1977.
264. Husain, S.Z., Marin, P.D., Šilic, C., Qaiser, M. and Petković, B. 1990. A micromorphological study of some representative genera in the tribe Saturejeae (Lamiaceae). - Bot. J. Linn. Soc. 103: 59-80. [DOI:10.1111/j.1095-8339.1990.tb00174.x]
265. Kahraman, A., Celep, F., Doğan, M., Guerin, G.R. and Bagherpour, S. 2011. Mericarp morphology and its systematic implications for the genus Salvia L. section Hymenosphace Benth. (Lamiaceae) in Turkey. - Plant Syst. Evol. 292: 33-39. [DOI:10.1007/s00606-010-0394-y]
266. Krawczyk, K. and Głowacka, K. 2015. Nutlet micromorphology and its taxonomic utility in Lamium L. (Lamiaceae). - Plant Syst. Evol. 301: 1863-1874. [DOI:10.1007/s00606-015-1199-9]
267. Marin, P.D., Petkovié, B. and Duletié, S. 1994: Nutlet sculpturing of selected Teucrium species (Lamiaceae): a character of taxonomic significance. - Plant Syst. Evol. 192: 199-214. [DOI:10.1007/BF00986252]
268. Moon, H. K. and Hong, S.P. 2006. Nutlet morphology and anatomy of the genus Lycopus (Lamiaceae. Mentheae). - Pl. Res. J. 119: 633-644. [DOI:10.1007/s10265-006-0023-6]
269. Moon, H. K. Hong, S.P. Smets, E. and Huysmans, S. 2009. Micromorphology and character evolution of Nutlets in tribe Mentheae (Nepetoideae, Lamiaceae). - Sys. Bot. 34: 760-776. [DOI:10.1600/036364409790139592]
270. Mosquero, A.M. and J. Pastor, R.J.Y. 2007. Morfología y anatomía de núculas de Marrubium (Lamiaceae) en el suroeste de España. - Lagascalia 27: 23-29.
271. Navarro, T. and El-Oualidi, J. 2000. Trichomes morphology in Teucrium L. (Labiatae), A taxonomic review. - An. Jard. Bot. Madrid 57: 277-297. [DOI:10.3989/ajbm.1999.v57.i2.203]
272. Oran, S.A. 1996. Ultrastructure of nutlet surface of the genus Salvia L. in Jordan and the neighbouring countries. - Dirasat. Nat. Eng. Sci. 23: 393-408.
273. Özkan, M., Aktaş, K., Özdemir, C. and Guerin, G. 2009. Nutlet morphology and its taxonomic utility in Salvia (Lamiaceae: Mentheae) from Turkey. - Acta Bot. Croat. 68: 105-115.
274. Patzak, V.A. 1958. Revision der Gattung Ballota Section Ballota. - Ann. Naturhist. Mus. Wien. 62: 57-86.
275. Ryding, O. 1995. Pericarp structure and phylogeny of Lamiaceae- Verbenaceae complex. - Plant Syst. Evol. 198: 101-141. [DOI:10.1007/BF00985109]
276. Ryding, O. 1998. Phylogeny of the Leucas Group (Lamiaceae). - Syst. Bot. 23: 235-237. [DOI:10.2307/2419591]
277. Salmaki, Y., Zarre, S. and Jamzad, Z. 2008. Nutlet morphology of Stachys (Lamiaceae) in Iran and its systematic implication. - Feddes Repert. 119: 631-645. [DOI:10.1002/fedr.200811187]
278. Satıl, F. Kaya, A, Akçiçek, E. and Dirmenci, T. 2012. Nutlet micromorphology of Turkish Stachys sect. Eriostomum (Lamiaceae) and its systematic implications. - Nordic J. Bot. 30: 352-364. [DOI:10.1111/j.1756-1051.2011.01306.x]
279. Scheen, A.-C Bendiksby, M., Ryding, O., Mathiesen, C., Albert, V.A. and Lindqvist, C. 2010. Molecular phylogenetics, character evolution and suprageneric classification of Lamioideae (Lamiaceae). - Ann. Missouri Bot. Gard. 97: 191-219. [DOI:10.3417/2007174]
280. Seybold, S. 1978. Revision der Persischen Marrubium- Arten (Labiatae) Vorarbeiten zur Flora Iranica. - Stuttgarter Beitr. zur Naturkunde Ser. A (Biol.) 310: 1-31.
281. Siadati, S. Salmaki, Y., Saeidi Mehrvarz, Sh., Heubl, G. and Weigend, M. 2018. Untangling the generic boundaries in tribe Marrubieae (Lamiaceae: Lamioideae) using nuclear and plastid DNA sequences. - Taxon 67: 770-783. [DOI:10.12705/674.6]
282. Stearn, W.T. 1983. Botanical Latin, Chapter XXV. - David & Charles, Newton Abbot, London and North Pomfret, Vermont, 153 pp.
283. Tarimcilar, G. Yilmaz, Ö., Daşkin, R. and Kaynak, G. 2013. Nutlet morphology and its taxonomic significance in the genus Mentha L. (Lamiaceae) from Turkey. - Bangladesh J. Plant Taxon. 20: 9-18. [DOI:10.3329/bjpt.v20i1.15459]
284. Al-Shehbaz, I.A., Beilstein M.A. and Kellogg EA. 2006. Systematic and phylogeny of the Brassicaceae (Cruciferae): an overview. − Plant Syst. Evol. 259: 89-120. [DOI:10.1007/s00606-006-0415-z]
285. Al-Shehbaz, I.A. 2012. A generic and tribal synopsis of the Brassicaceae (Cruciferae) − Taxon 61: 931-954. [DOI:10.1002/tax.615002]
286. Al-Shehbaz, I.A. 2017. Five New Species of Lepidium (Brassicaceae): L. pabotii (Iran), L. arequipa (Peru), and L. lapazianum, L. linearilobum, and L. stephan-beckii (Bolivia). − Novon 25: 403-413. [DOI:10.3417/D-17-00006]
287. Boissier, E. 1843. Diagnosis. Plantarum Orientalium Novarum, ser. 1, No. 2, Lipisiae & Lipsiae & Parisiis, Genevae, 115 pp.
288. Bona, M. 2012. Distribution of Lepidium taxa in Turkey. − Bocconea 24: 221-225.
289. Busch, N.A. 1939. Cruciferae B. Juss. − In: Komarov, V.L. (ed.) Flora of USSR 8: 14-606. − Editio Academiae Scientarum USSR, Moscow & Leningrad.
290. Esri. 2011. ARC-GIS Desktop. Release 10. Redlands, CA: Environmental Systems Research Institute.
291. Fakhr Rangbari, H. 2017. Tribe: Lepidieae. - In: Assadi et al., M. (ed.), Flora of Iran: Brassicaceae, 143: 102-137. - RIFR, Tehran.
292. German, D.A. 2014. Taxonomic remarks on some Asian Lepidium s.l. (Brassicaceae). − Phytotaxa: 186: 97-105. [DOI:10.11646/phytotaxa.186.2.4]
293. Hedge, I. 1968. Tribus Lepidieae. − In: Rechinger, K.H. (ed.) Flora Iranica 57: 63-122. − Akademische Druck-u. Verlagsanstalt, Graz.
294. Hewson, J. 1981. The genus Lepidium L. (Brassicaceae). − Australia Brunonia 4: 217-308. [DOI:10.1071/BRU9810217]
295. Junussov, S.Yu. 1978. Lepidium L. − In: Ovczinnikov, P.N. (ed.) Flora Tadzhikskoĭ SSR [Flora of Tajik SSR] 5: 233-243, 628. − Nauka, Leningrad.
296. Mamizadeh, L. and Naqinejad, A.L. 2018 Lepidium virginicum L. (Brassicaceae) a new record for the flora of Iran. − Nova Biol. Reperta 5: 324-328. [DOI:10.29252/nbr.5.3.324]
297. Vassilczenko, I.T. 1948. Cruciferae. − In: Shishkin, B.K. & Vassilczenko, I.T. (eds.) Flora Turkmenii [Flora of Turkmenistan] 3: 169-268. − Publishers of Turkmenian Branch of Academy of Sciences of USSR, Ashgabad.
298. Zhou, T.-Y., Lu L.-L., Yang G. and Al-Shehbaz, I.A. 2001. Brassicaceae (Cruciferae). − In: Wu, Z.-G. and Raven, P.H. (eds.). Flora of China 8: 1-193. (Brassicaceae through Saxifragaceae). − Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis. Boissier, E. 1875. Centaurea L. - In: Flora Orientalis 3: 614-696. - H. Georg, Geneva & Basileae.
299. Bona, M. 2014. Achene characteristics of Turkish Centaurea (Asteraceae) and their systematic application. - Bangladesh J. Bot. 43: 163-168. [DOI:10.3329/bjb.v43i2.21668]
300. Bremer, B., Bremer, K., Chase, M., Fay, M., Reveal, J., Soltis D. and Stevens, P. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. - Bot. J. Linn. Soc. 161: 105-121. [DOI:10.1111/j.1095-8339.2009.00996.x]
301. Davis, P.H., Mill, R. and Tan, K. (eds.). 1988. Flora of Turkey and the East Aegean Islands, (Supplement) 10: 489-501. - Edinburgh University Press, Edinburgh.
302. Ghahreman, A. and Attar, F. 1999. Biodiversity of plant species in Iran. - Tehran University Publications, Tehran.
303. Heywood, V.H. 1979. Flowering plants of the world. - Oxford University Press, Oxford.
304. Hickey, M. and King, C.J. 1981. 100 families of flowering plants. - Cambridge University Press, Cambridge.
305. Judd, W.S., Campbell, C.S., Kellogg, E.A., Stevens, P.F. and M.J. Donoghue. 2008. Plant systematics: A phylogenetic approach (Third Edition). Sinauer Associates, Inc., Sunderland, Massachusetts.
306. Maleev P. V. 1971. Centaurea L. In: Komarov V.L (ed.), Flora of U.S.S.R 28: 368-577. - Academy of Science of the U.S.S.R, Moscow & Leningrad.
307. Negaresh, K. and Rahiminejad, M.R. 2014. A contribution to the taxonomy of Centaurea sect. Cynaroides (Asteraceae, Cardueae-Centaureinae) in Iran. - Phytotaxa 158: 229-244. [DOI:10.11646/phytotaxa.158.3.3]
308. Ranjbar, M. and Negaresh, K. 2014. A revision of Centaurea sect. Centaurea (Asteraceae) from Iran. - Turk. J. Bot. 38: 969-987. [DOI:10.3906/bot-1304-26]
309. Shabestari, E.S.B., Attar, F., Riahi, H., and Sheidai, M. 2013a. Pollen morphology of Centaurea L. (Asteraceae) in Iran. - Acta Bot. Brasil. 27: 669-679. [DOI:10.1590/S0102-33062013000400004]
310. Shabestari, E.S.B., Attar, F., Riahi, H. and Sheidai, M. 2013b. Seed morphology of the Centaurea species (Asteraceae) in Iran. - Phytol. Balcan 19: 209-214.
311. Wagenitz, G. 1986. Centaurea in South-West Asia: patterns of distribution and diversity, Proceedings of the Royal Society of Edinburgh. Section B. Biological Sciences 89: 11-21. [DOI:10.1017/S0269727000008861]
312. Wagenitz, G. 1980. Centaurea L. - In: Rechinger, K.H. (ed.) Flora Iranica. 139b: 356-362. - Akademische Druck-und Verlagsanstalt, Graz.
313. Wagenitz, G. 1975. Centaurea L. - In: Davis, P.H. (ed.) Flora of Turkey and the East Aegean Islands Vol. 5: 465-586. - Edinburgh University Press, Edinburgh.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb