Volume 7, Issue 1 (4-2020)                   nbr 2020, 7(1): 76-84 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohajel Kazemi E, Pazhohandeh M, Jonoubi P, Kazemian M. The optimization of gene transfer to tomato and the study of expression possibility of salt-tolerance gene (SOS3). nbr 2020; 7 (1) :76-84
URL: http://nbr.khu.ac.ir/article-1-3209-en.html
Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Iran , e.mohajelkazemi@tabrizu.ac.ir
Abstract:   (4504 Views)
One of the main strategies to improve plant tolerance is the expression of stress-induced genes, which play a significant role in the ionic balance of plants. SOS3 is one of the important components of SOS-regulated ionic homeostasis pathway. Therefore, the expression of this gene could be an important step towards producing salt-resistant plants. In this work, we have transformed tomato (Solanum lycopersicum) by Agrobacterium (GV3101 and LBA4404) containing plasmids with SOS3 genes. The maximum regeneration rate was determined in cotyledons of CH genotype. The simultaneous use of cotyledons and hypocotyls in the culture medium had the best outcome. In addition, the best time was found to be one day after inoculation. Also, the best transgenic variety was detected for Agrobacterium GV3101, which can be attributed to the interaction between the genus Agrobacterium and the tomato variety. Transgenic plants were transferred to a culture medium containing sequestrene, which caused the acceleration of the seedling growth in particular. The presence of the SOS3 in the transgenic plants was verified by PCR and RT-PCR methods.
 
 
 
 
Full-Text [PDF 310 kb]   (1945 Downloads)    
Type of Study: Original Article | Subject: Plant Biology
Received: 2018/11/21 | Revised: 2020/07/15 | Accepted: 2019/03/10 | Published: 2020/03/31 | ePublished: 2020/03/31

References
1. Afroz, A., Chaudhry, Z., Rashid, U., Khan, M.R &Ali, G.M. 2010. Enhanced regeneration in explants of tomato (Lycopersicon esculentum L.) with the treatment of coconut water. AJB. 24: 3634-3644.
2. Archibold, O. 1995. Ecology of World Vegetation. Chapman and Hall, London. pp: 430-436. [DOI:10.1007/978-94-011-0009-0]
3. Asch, F., Dingkuhn, M. &Dorffling, K. 2000. Salinity increases CO2 assimilation but reduces growth in field grown, irrigated rice. Plant Soil 218: 1-10. [DOI:10.1023/A:1014953504021]
4. Birnboim, H.C. &Doly J. 1979 A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7:1513-1523. [DOI:10.1093/nar/7.6.1513]
5. Deinlein, U., Stephan, A., Horie, T., Luo, W., Xu, G. &Schroeder, J. 2014 Plant salt-tolerance mechanisms. Trends Plant Sci. 19: 371-379. [DOI:10.1016/j.tplants.2014.02.001]
6. Demir Kaya, M., Gamze Okc, U., Atak, M. &Yakup, C. 2006. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Europ. J. Agron. 24: 291-295. [DOI:10.1016/j.eja.2005.08.001]
7. Fei, Z., Tang, X., Alba, R. &Giovannoni, J. 2006. Tomato expression database: a suite of data presentation and analysis tools. Nucleic Acids Res. 34: 766-770. [DOI:10.1093/nar/gkj110]
8. Gong, D., Jagendorf, G.Y. &Zhu, J. 2002. Biochemical characterization of the Arabidopsis thaliana protein kinase SOS2 that functions in salt tolerance. Plant Physiol. 130: 256-264. [DOI:10.1104/pp.004507]
9. Gubis, J., Lajchova, Z., Farago, J. &Jurekova, Z. 2004. Effect of growth regulators on shoot induction and plant regeneration in tomato (Lycopersicon esculentum Mill.). Bio. Bratislava. 59: 405-408.
10. Huazhong, S., Cheolsoo, M. &Zhu, J. 2000. The Arabidopsis thaliana salt tolerance gene encodes a putative na1H1 antiprter. PNAS. 97: 6896-6901. [DOI:10.1073/pnas.120170197]
11. Jelili, T.O. 2006. Agrobacteium-mediated transformation of plant: emerging factors that influence efficiency. Biotech. Mol. Bio. Reviw 1: 12-20.
12. Palavalasa, H., Narasu, L., Varshney, R. &Kavi Kishor, P. 2017. Genome wide analysis of sodium transporters and expression of Na+/H+-antiporter-like protein (SbNHXLP) gene in tomato for salt tolerance. Inter. Drought 9: 417-126.
13. Reed, A., Kretzmer, K., Naylor, M., Finn, R., Magin, K., Hammond, B., Leimgruber, R., Rogers, S. &Fuchs, R. 1996. Safety assessment of 1-aminocyclopropane-1- carboxylic acid deaminase protein expressed in delayed ripening tomatoes. J. Agric. Food Chem. 44: 388-394. [DOI:10.1021/jf9504071]
14. Rezaei Moshaei M., Nematzadeh, G.A., Askari, H., Nejad, A.S. &Pakdin, A. 2014. Quantitative gene expression analysis of some sodium ion transporters under salinity stress in Aeluropus littoralis. Saudi J. Biol. Sci. 21: 394-399. [DOI:10.1016/j.sjbs.2014.05.001]
15. Roy, R., Purty, R.S., Agrawal, V. &Gupta, S.C. 2006. Transformation of tomato cultivar 'Pusa ruby' with bspA gene from Populus tremula for drought tolerance. PCTOC. 84: 55-67. [DOI:10.1007/s11240-005-9000-3]
16. Sarwarkhan, M., Usman, M. &Lilla, M. 2006. Facile plant regeneration from tomato leaves induced with spectinomycin. Pak. J. Bot. 38: 947-952.
17. Shi, H., Ishitani, M., Kim, C. &Zhu, J.K. 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. PNASA. 97: 6896-6901. [DOI:10.1073/pnas.120170197]
18. Shi, H., Lee, B.H., Wu, S.J. &Zhu, J.K. 2003. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat. Biotechnol. 21: 81-85. [DOI:10.1038/nbt766]
19. Sreenivasulu, N., Sopory, S.K. &Kavi Kishor, P.B. 2007. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388: 1-13. [DOI:10.1016/j.gene.2006.10.009]
20. Van Oosten, M., Sharkhuu, A., Batelli, G., Bressan, R. &Maggio, A. 2013. The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress. Plant Mol. Biol. 83: 405-415. [DOI:10.1007/s11103-013-0099-z]
21. Van, D. T., Ferro, N. &Jacobsen, H.J. 2010. Development of a simple and effective protocol for Agrobacterium tumefaciens mediated leaf disc transformation of commercial tomato cultivars. GM Crops J. 32: 312-321. [DOI:10.4161/gmcr.1.5.14703]
22. Wei, D., Zhang, W., Wang, C., Meng, Q., Li, G., Chen, T. &Yang, X. 2017. Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants. Plant Sci. 257: 74-83. [DOI:10.1016/j.plantsci.2017.01.012]
23. Yang, Q., Chen, Z., Zhou, X., Yin, H., Li, X. &Xin, X. 2009. Overexpression of SOS (Salt Overly Sensitive) genes increase salt tolerance in transgenic Arabidopsis. Mol. Plant 2: 22-31. [DOI:10.1093/mp/ssn058]
24. Yue, Y., Zhang, M., Zhang, J., Duan, L. &Li, Z. 2012. SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K/Na ratio. J. Plant Physiol. 169: 255-261. [DOI:10.1016/j.jplph.2011.10.007]
25. Zhang, X., Dong, F.C., Gao, J.F. &Song, C.P. 2001. Hydrogen peroxide induced changes in intracellular pH of guard cells precede stomatal closure. Cell Res. 11: 37-43. [DOI:10.1038/sj.cr.7290064]
26. Zhang, H. &Blumwald, E. 2001. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat. Biotechnol. 19: 765-768. [DOI:10.1038/90824]
27. Zhang, J., Creelman, R. &Zhu, J. 2004. From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol. 135: 615-621. [DOI:10.1104/pp.104.040295]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb