Volume 6, Issue 4 (1-2020)                   NBR 2020, 6(4): 415-423 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khosroshahi S, Salehghamari E, Amoozegar M A, Saffarian P. Screening methods and enzyme profile of agricultural plant-endophytic bacteria. NBR 2020; 6 (4) :415-423
URL: http://nbr.khu.ac.ir/article-1-3284-en.html
Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran , esaleh@khu.ac.ir
Abstract:   (2875 Views)
Nowadays plant endophytic bacteria have found diverse and useful applications in biotechnology; therefore, much attention has been paid to the isolation, identification, and evaluation of these microorganisms. Since the sterilizing plant tissue surfaces from epiphytic bacteria is difficulty, the efficacy of three different screening methods for endophytic bacteria including 1- HClO sterilization, 2- Periodic sterilization (modified tyndallization) and 3- Triton X100 and HClO sterilization, was evaluated in this study. The modified Tyndallization is an innovative method used in this study to appropriately remove the internal spores of epiphytic bacteria, considered to be an obstacle to the isolation of endophytes. Most of the endophytic bacteria were isolated from dicotyledons and leaves. Endophytic bacteria were also studied for the production of different hydrolase enzymes, whereas the protease enzyme was produced in a wide range of endophytic bacteria in greater quantities than other enzymes. The EndoA strain was molecularly identified and found to be 100% similar to Bacillus halotolerans.

 
Full-Text [PDF 1300 kb]   (1160 Downloads)    
Type of Study: Original Article | Subject: Microbiology
Received: 2019/07/10 | Revised: 2020/02/24 | Accepted: 2019/10/16 | Published: 2020/01/8 | ePublished: 2020/01/8

References
1. Arnold, A.E. and Engelbrecht, B.M.J. 2007. Fungal endophytes nearly double minimum leaf conductance in seedlings of a neotropical tree species. - J. Tropic. Ecol. 23: 369-372. [DOI:10.1017/S0266467407004038]
2. Bibi, F., Naseer, M.I., Yasir, M., Al-Ghamdi, A.A.K. and Azhar, E.I. 2018. LC-MS based identification of secondary metabolites from marine antagonistic endophytic bacteria. - Genet. Mol. Res. 17: 1-14. [DOI:10.4238/gmr16039857]
3. Bloemberg, G.V. and Carvajal M.M.C. 2006. Microbial interactions with plants: a hidden world. In microbial root endophytes. 321-333. Springer, Berlin, Heidelberg. [DOI:10.1007/3-540-33526-9_18]
4. Carrim, A.J.I., Barbosa, E.C. and Vieira, J.D.G. 2006. Enzymatic activity of endophytic bacterial isolates of Jacaranda decurrens Cham. (Carobinha-do-campo). - Braz. Arch. Biol. Tech. 49: 353-359. [DOI:10.1590/S1516-89132006000400001]
5. Christina, A., Christapher, V. and Bhore, S.J. 2013. Endophytic bacteria as a source of novel antibiotics: an overview. - Pharmacogn. Rev. 7: 11-16. [DOI:10.4103/0973-7847.112833]
6. Cowan, D.A. 1991. Industrial enzymes. In biotechnology, the science and the business eds moses, V. and cape, R.E. pp 311-340. Reading: Harwood Academic Publishers.
7. De Almeida Lopes, K.B., Carpentieri‐Pipolo, V., Fira, D., Balatti, P.A., López, S.M.Y., Oro, T.H. and Degrassi, G. 2018. Screening of bacterial endophytes as potential biocontrol agents against soybean diseases. - J. App. Microbial. 125: 1466-1481. [DOI:10.1111/jam.14041]
8. Gasser, I., Cardinale, M., Müller, H., Heller, S., Eberl, L., Lindenkamp, N., Kaddor, C., Steinbüchel, A. and Berg, G. 2011. Analysis of the endophytic lifestyle and plant growth promotion of Burkholderia terricola ZR2-12. - Plant Soil 347: 125-137. [DOI:10.1007/s11104-011-0833-8]
9. Joshi, S., Singh, A.V. and Prasad, B. 2018. Enzymatic activity and plant growth promoting potential of endophytic bacteria isolated from Ocimum sanctum and Aloe vera. - Int. J. Curr. Microbiol. App. Sci. 7: 2314-2326. [DOI:10.20546/ijcmas.2018.706.277]
10. Kim, M., Morrison, M. and Yu, Z., 2011. Evaluation of different partial 16S rRNA gene sequence regions for phylogenetic analysis of microbiomes. - J. Microbiol. Meth. 84: 81-87. [DOI:10.1016/j.mimet.2010.10.020]
11. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M. and Na, H. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. - Int. J. Syst. Evol. Micr. 62: 716-721. [DOI:10.1099/ijs.0.038075-0]
12. Liu, Y., Guo, J., Li, L., Asem, M.D., Zhang, Y., Mohamad, O.A., Salam, N. and Li, W. 2017. Endophytic bacteria associated with endangered plant Ferula sinkiangensis KM Shen in an arid land: diversity and plant growth-promoting traits. - J. Arid. Land 9: 432-445. [DOI:10.1007/s40333-017-0015-5]
13. Lodewyckx, C., Vangronsveld, J., Porteous, F., Moore, E.R., Taghavi, S., Mezgeay, M. and der Lelie, D.V. 2002. Endophytic bacteria and their potential applications. - Cr. Rev. Plant Sci. 21: 583-606. [DOI:10.1080/0735-260291044377]
14. Malinowski, D.P. and Belesky, D.P. 2006. Ecological importance of Neotyphodium spp. grass endophytes in agroecosystems. - Grassland Sci. 52: 1-14. [DOI:10.1111/j.1744-697X.2006.00041.x]
15. Malinowski, D.P., Zuo, H., Belesky, D.P. and Alloush, GA. 2005. Evidence for copper binding by extracellular root exudates of tall fescue but not perennial ryegrass infected with Neotyphodium spp. endophytes. - Plant Soil 267: 1-12. [DOI:10.1007/s11104-005-2575-y]
16. Marmur, J. 1961. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. - J. Mol. Biol. 3: 208-218. [DOI:10.1016/S0022-2836(61)80047-8]
17. Ntabo, R.M., Nyamache, A.K., Lwande, W., Kabii, J. and Nonoh, J. 2018. Enzymatic activity of endophytic bacterial isolates from selected mangrove plants in Kenya. - Open Microbiol. J. 12: 354-363. [DOI:10.2174/1874285801812010354]
18. Reece, J.B., Urry, L.A., Cain, M.L., Wasserman, S.A., Minorsky, P.V. and Jackson, R.B. 2014. Campbell biology (No. s 1309). Boston: Pearson.1263 pp.
19. Reinhold-Hurek, B. and Hurek, T. 2011. Living inside plants: bacterial endophytes. - Curr .Opin. Plant. Biol. 14: 435-443. [DOI:10.1016/j.pbi.2011.04.004]
20. Sánchez-López, A.S., Thijs, S., Beckers, B., González-Chávez, M.C., Weyens, N., Carrillo-González, R. and Vangronsveld, J. 2018. Community structure and diversity of endophytic bacteria in seeds of three consecutive generations of Crotalaria pumila growing on metal mine residues. - Plant Soil 422: 51-66. [DOI:10.1007/s11104-017-3176-2]
21. Taechowisan, T., Peberdy, J.F. and Lumyong, S. 2003. Isolation of endophytic actinomycetes from selected plants and their antifungal activity. - World J. Microbiol. Biotechnol. 19: 381-385. [DOI:10.1023/A:1023901107182]
22. Tintjer, T. and Rudgers, J.A. 2006. Grass-herbivore interactions altered by strains of a native endophyte. - New Phytol. 170: 513-521. [DOI:10.1111/j.1469-8137.2006.01720.x]
23. Wejse, P.L. and Ingvorsen, K. 2003. Purification and characterization of two extremely halotolerant xylanase from a novel halophilic bacterium. - Extremophiles 7: 423-431. [DOI:10.1007/s00792-003-0342-7]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb