Volume 11, Issue 1 (6-2024)                   nbr 2024, 11(1): 33-47 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asgari B, Mohammadi A, Attaran B. Nanoemulsification of Syzygium aromaticum essential oil; Preparation, optimization, and study of its antibacterial activity against some gastrointestinal poisoning bacteria. nbr 2024; 11 (1) : 3
URL: http://nbr.khu.ac.ir/article-1-3661-en.html
Alzahra University , a.mohammadi@alzahra.ac.ir
Abstract:   (1511 Views)
The aim of the present work was to produce a stable nanoemulsion containing clove (Syzygium aromaticum) essential oil (PCLO) and evaluate its antimicrobial activity. The effect of the preparation technique, the type of surfactant and the ratio of surfactant to oil was evaluated to optimize the preparation formula of oil-in-water nanoemulsion. The optimized formula prepared by low energy production method containing 4% w/w PCLO and 12% w/w mixed surfactant (SDS + Tween 80) produced a clear and stable nanoemulsion for 90 days with an average particle diameter below 150 nm. The antibacterial activity of pure PCLO and its nanoemulsions (NCLO) was investigated by disk diffusion, agar well, and broth methods in 3 indicator bacteria of gastrointestinal infections, Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium. Minimum inhibitory concentration (MIC) and bacteriocidal concentration (MBC) as well as dynamic killing time were determined in the tested bacteria. Strong antibacterial activity of PCLO and NCLO was revealed in the concentration range of 1000-2000 ppm. The killing kinetics study showed that during the first 15 minutes of exposure to NCLO at the MIC concentration, there was a rapid and extensive reduction in the amount of viable microorganisms. The presented data, considering the optimal performance of antimicrobial substances in food, cosmetics and chemical industries, can help in the rational design of nanoemulsion-based essential oil delivery systems.
 
Article number: 3
Full-Text [PDF 1485 kb]   (338 Downloads)    
Type of Study: Original Article | Subject: Biotechnology
Received: 2023/12/17 | Revised: 2024/12/4 | Accepted: 2024/06/9 | Published: 2024/06/22 | ePublished: 2024/06/22

References
1. Agarwal, H., Kumar, S.V., Rajeshkumar, S., 2017. A review on green synthesis of zinc oxide nanoparticles-An eco-friendly approach. Resour. Technol. 3, 406-413. [DOI:10.1016/j.reffit.2017.03.002]
2. Anton, N., Vandamme, T.F., 2009. The universality of low-energy nano-emulsification. Int. J. Pharm. 377, 142-147. [DOI:10.1016/j.ijpharm.2009.05.014]
3. Artiga-Artigas, M., Acevedo-Fani, A., Martín-Belloso, O., 2017. Improving the shelf life of low-fat cut cheese using nanoemulsion-based edible coatings containing oregano essential oil and mandarin fiber. Food Control 76, 1-12. [DOI:10.1016/j.foodcont.2017.01.001]
4. Chu, Y., Gao, C., Liu, X., Zhang, N., Xu, T., Feng, X., Yang, Y., Shen, X., Tang, X., 2020. Improvement of storage quality of strawberries by pullulan coatings incorporated with cinnamon essential oil nanoemulsion. Lwt 122, 109054. [DOI:10.1016/j.lwt.2020.109054]
5. Chuesiang, P., Siripatrawan, U., Sanguandeekul, R., McClements, D.J., McLandsborough, L., 2019a. Antimicrobial activity of PIT-fabricated cinnamon oil nanoemulsions: Effect of surfactant concentration on morphology of foodborne pathogens. Food Control 98, 405-411. [DOI:10.1016/j.foodcont.2018.11.024]
6. Chuesiang, P., Siripatrawan, U., Sanguandeekul, R., McLandsborough, L., McClements, D.J., 2018. Optimization of cinnamon oil nanoemulsions using phase inversion temperature method: Impact of oil phase composition and surfactant concentration. J. Colloid Interface Sci. 514, 208-216. [DOI:10.1016/j.jcis.2017.11.084]
7. Chuesiang, P., Siripatrawan, U., Sanguandeekul, R., Yang, J.S., McClements, D.J., McLandsborough, L., 2019b. Antimicrobial activity and chemical stability of cinnamon oil in oil-in-water nanoemulsions fabricated using the phase inversion temperature method. LWT 110, 190-196. [DOI:10.1016/j.lwt.2019.03.012]
8. CLSI, 2015. Approved Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. CLSI Doc. M07-A9.
9. Cortés-Rojas, D.F., de Souza, C.R.F., Oliveira, W.P., 2014. Clove (Syzygium aromaticum): a precious spice. Asian Pac. J. Trop. Biomed. 4, 90-96. [DOI:10.1016/S2221-1691(14)60215-X]
10. Doghish, A.S., Shehabeldine, A.M., El-Mahdy, H.A., Hassanin, M.M.H., Al-Askar, A.A., Marey, S.A., AbdElgawad, H., Hashem, A.H., 2023. Thymus vulgaris oil nanoemulsion: synthesis, characterization, antimicrobial and anticancer activities. Molecules 28, 6910. [DOI:10.3390/molecules28196910]
11. Ghaderi, L., Moghimi, R., Aliahmadi, A., McClements, D.J., Rafati, H., 2017. Development of antimicrobial nanoemulsion‐based delivery systems against selected pathogenic bacteria using a thymol‐rich Thymus daenensis essential oil. J. Appl. Microbiol. 123, 832-840. [DOI:10.1111/jam.13541]
12. Lu, W.-C., Huang, D.-W., Wang, C.-C., Yeh, C.-H., Tsai, J.-C., Huang, Y.-T., Li, P.-H., 2018. Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. J. food drug Anal. 26, 82-89. [DOI:10.1016/j.jfda.2016.12.018]
13. Mazarei, Z., Rafati, H., 2019. Nanoemulsification of Satureja khuzestanica essential oil and pure carvacrol; comparison of physicochemical properties and antimicrobial activity against food pathogens. LWT 100, 328-334. [DOI:10.1016/j.lwt.2018.10.094]
14. McClements, D.J., Jafari, S.M., 2018. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci. 251, 55-79. [DOI:10.1016/j.cis.2017.12.001]
15. Mendes, J.F., Martins, H.H.A., Otoni, C.G., Santana, N.A., Silva, R.C.S., Da Silva, A.G., Silva, M. V, Correia, M.T.S., Machado, G., Pinheiro, A.C.M., 2018. Chemical composition and antibacterial activity of Eugenia brejoensis essential oil nanoemulsions against Pseudomonas fluorescens. LWT 93, 659-664. [DOI:10.1016/j.lwt.2018.04.015]
16. Moghimi, R., Aliahmadi, A., Rafati, H., Abtahi, H.R., Amini, S., Feizabadi, M.M., 2018. Antibacterial and anti-biofilm activity of nanoemulsion of Thymus daenensis oil against multi-drug resistant Acinetobacter baumannii. J. Mol. Liq. 265, 765-770. [DOI:10.1016/j.molliq.2018.07.023]
17. Mohammadi, A., Hashemi, M., Hosseini, S.M.S.M., 2016. Postharvest treatment of nanochitosan-based coating loaded with Zataria multiflora essential oil improves antioxidant activity and extends shelf-life of cucumber. Innov. Food Sci. Emerg. Technol. 33, 580-588. [DOI:10.1016/j.ifset.2015.10.015]
18. Mohammadi, A., Hosseini, S.M.S.M., Hashemi, M., 2020. Emerging chitosan nanoparticles loading-system boosted the antibacterial activity of Cinnamomum zeylanicum essential oil. Ind. Crops Prod. 155. [DOI:10.1016/j.indcrop.2020.112824]
19. Padrilah, S.N., Samsudin, N.I.P., Shukor, M.Y.A., Masdor, N.A., 2024. Nanoemulsion strategies in controlling fungal contamination and toxin production on grain corn using essential oils. Green Chem. Lett. Rev. 17, 2315138. [DOI:10.1080/17518253.2024.2315138]
20. Pandey, V.K., Srivastava, S., Dash, K.K., Singh, R., Dar, A.H., Singh, T., Farooqui, A., Shaikh, A.M., Kovacs, B., 2024. Bioactive properties of clove (Syzygium aromaticum) essential oil nanoemulsion: A comprehensive review. Heliyon. [DOI:10.1016/j.heliyon.2023.e22437]
21. Shahabi, N., Tajik, H., Moradi, M., Forough, M., Ezati, P., 2017. Physical, antimicrobial and antibiofilm properties of Zataria multiflora Boiss essential oil nanoemulsion. Int. J. food Sci. Technol. 52, 1645-1652. [DOI:10.1111/ijfs.13438]
22. Sharma, M., Mann, B., Pothuraju, R., Sharma, R., Kumar, R., 2022. Physico-chemical characterization of ultrasound assisted clove oil-loaded nanoemulsion: As enhanced antimicrobial potential. Biotechnol. Reports 34, e00720. [DOI:10.1016/j.btre.2022.e00720]
23. Shehabeldine, A.M., Doghish, A.S., El-Dakroury, W.A., Hassanin, M.M.H., Al-Askar, A.A., AbdElgawad, H., Hashem, A.H., 2023. Antimicrobial, antibiofilm, and anticancer activities of syzygium aromaticum essential oil nanoemulsion. Molecules 28, 5812. [DOI:10.3390/molecules28155812]
24. Vosoughian, N., Asadbeygi, M., Mohammadi, A., Soudi, M.R., 2023. Green synthesis of zinc oxide nanoparticles using novel bacterium strain (Bacillus subtilis NH1-8) and their in vitro antibacterial and antibiofilm activities against Salmonella typhimurium. Microb. Pathog. 106457. https://doi.org/10.1016/j.micpath.2023.106457 [DOI:https://doi.org/10.1016/j.micpath.2023.106457]
25. Wang, L., Dong, J., Chen, J., Eastoe, J., Li, X., 2009. Design and optimization of a new self-nanoemulsifying drug delivery system. J. Colloid Interface Sci. 330, 443-448. [DOI:10.1016/j.jcis.2008.10.077]
26. Xue, J., Davidson, P.M., Zhong, Q., 2015. Antimicrobial activity of thyme oil co-nanoemulsified with sodium caseinate and lecithin. Int. J. Food Microbiol. 210, 1-8. [DOI:10.1016/j.ijfoodmicro.2015.06.003]
27. Yazdi, M.K., Haniloo, A., Ghaffari, A., Torabi, N., 2020. Antiparasitic effects of Zataria multiflora essential oil nano-emulsion on larval stages of Echinococcus granulosus. J. Parasit. Dis. 1-7.
28. Yazgan, H., 2020. Investigation of antimicrobial properties of sage essential oil and its nanoemulsion as antimicrobial agent. LWT 130, 109669. [DOI:10.1016/j.lwt.2020.109669]
29. Yazgan, H., Ozogul, Y., Kuley, E., 2019. Antimicrobial influence of nanoemulsified lemon essential oil and pure lemon essential oil on food-borne pathogens and fish spoilage bacteria. Int. J. Food Microbiol. 306, 108266. [DOI:10.1016/j.ijfoodmicro.2019.108266]
30. Zhang, H., Shen, Y., Weng, P., Zhao, G., Feng, F., Zheng, X., 2009. Antimicrobial activity of a food-grade fully dilutable microemulsion against Escherichia coli and Staphylococcus aureus. Int. J. Food Microbiol. 135, 211-215. [DOI:10.1016/j.ijfoodmicro.2009.08.015]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb