دوره 11، شماره 1 - ( 4-1403 )                   جلد 11 شماره 1 صفحات 32-14 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

mehdinejhad moghadam N, sofalian O, zare N, sedghi M, karimizadeh R, mohamadiazar F. Investigating the effect of salinity stress on photosynthesis and physiological traits of different lentil cultivars and its relationship with molecular markers. nbr 2024; 11 (1) : 2
URL: http://nbr.khu.ac.ir/article-1-3649-fa.html
مهدی نژاد مقدم نسرین، سفالیان امید، زارع ناصر، صدقی محمد، کریمی زاده رحمت الله، محمدی آذر فاطمه. بررسی اثر تنش شوری بر فتوسنتز و صفات فیزیولوژیک ارقام مختلف عدس و ارتباط آن با نشانگرهای مولکولی. یافته‌ های نوین در علوم زیستی. 1403; 11 (1) :14-32

URL: http://nbr.khu.ac.ir/article-1-3649-fa.html


دانشگاه محقق اردبیلی ، sofalian@gmail.com
چکیده:   (1767 مشاهده)
حبوبات از جمله گياهان زراعي متداول در مناطق خشك و نيمه خشك است که اغلب اين گياهان به شوري آب و خاك حساس يـا نيمه حساس مي­باشند. پژوهش حاضر به­منظور بررسی سه سطح شوری روی 18 رقم عدس در گلخانه و آزمایشگاه‌های دانشگاه محقق اردبیلی در سال 98-96 انجام شد. آزمایش به­صورت فاکتوریل در قالب طرح بلوک کامل تصادفی با سه تکرار انجام گرفت. صفات فتوسنتزی و فیزیولوژیکی مورد بررسی قرار گرفتند و رابطه صفات با 21 آغازگر ISSR اندازه­گیری شد. اثر متقابل ژنوتیپ در تنش در برخی صفات اختلاف معنی‌دار داشتند. نتایج مقایسه میانگین ژنوتیپ‌های عدس از نظر صفات فیزیولوژیک با روش دانکن در سطح احتمال پنج درصد انجام شد. همبستگی صفات در سطوح تنش جداگانه انجام شد. دندروگرام حاصل از تجزیه خوشه‌ای، ژنوتیپ‌ها را در شرایط شاهد و 60 میلی­مولار به سه گروه و در 120 میلی مولار به دو گروه تقسیم کرد. ژنوتیپ‌های 7 و 5 در تمامی گروه‌بندی‌ها در گروه برتر قرار گرفتند. رابطه نشانگر‌های مولکولی  ISSRبا صفات فیزیولوژیکی در بین ژنوتیپ‌ها محاسبه و برای تمامی صفات رگرسیون به روش گام به گام انجام شد. همه صفات در سه سطح تنش شوری با تعدادی از نشانگر‌های ISSR ارتباط معنی‌دار داشتند. در مجموع 22 نشانگر مثبت برای صفات فیزیولوژیکی در سطح شاهد، 9 نشانگر مثبت در سطح تنش متوسط و 23 نشانگر مثبت در سطح تنش شدید شناسایی شدند. از بین 21 آغازگر ISSR مورد مطالعه نشانگر P8A11 بیشترین تعداد مکان ژنی مرتبط با صفات فیزیولوژیکی مورد مطالعه را دارا بود.
شماره‌ی مقاله: 2
متن کامل [PDF 1151 kb]   (448 دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: علوم گیاهی
دریافت: 1402/8/1 | ویرایش نهایی: 1403/9/14 | پذیرش: 1403/4/2 | انتشار: 1403/4/2 | انتشار الکترونیک: 1403/4/2

فهرست منابع
1. Ahmad, S., Wahid, A. & Rasul, E. 2005. Comparative morphological and physiological responses of green gram genotypes to salinity applied at different growth stages. Botanical Bulletin of Academia Sinica, 46: 135-142.
2. Alizadeh, Y., Moradi, R. Nezami, A. & Eshghizadeh, H. 2018. The effect of salinity and seed size on germination and growth characteristics of lentil seedlings (Lens culinaris Medik.). Journal of Iranian Agricultural Research, 9: 2, p. 20 (in persian).
3. Allakhverdiev, S.I., Sakamoto, A. Nishiyama, Y. Inaba, M. & Murata, N. 2000. Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiology, 123: 1047-1056. [DOI:10.1104/pp.123.3.1047]
4. Amirjan, M.R., A. Iranbakhsh and M.H. Abnosi, 2009. Molecular mechanism of photosynthesis. Arak university, P.o.Box38156.
5. Andalibi, B., Mohammadi Azar, M. Ismailpour, B. & Shekari, F. 2021. Investigating the effect of salicylic acid and nanosilicon on some morphophysiological traits and essential oil under salinity stress of Lallemantia iberica (M.B.) Fisch. & C.A. Mey. Iranian Medicinal and Aromatic Plants Research Journal. 37: 2, 364-380 (in persian).
6. Arvin, P. & Firuzeh, R. 2021. Studying the effect of salinity stress on some physiological and biochemical parameters (Trigonella foenum-graecum L.) of several fenugreek plants. Iranian Medicinal and Aromatic Plants Research Journal. 37: 5, 822-837 (in persian).
7. Ashraf, M. 2001. Relationships between growth and gas exchange characteristics in some salttolerant amphidiploid" Brassicai" species in relation to their diploid parents. Environmental and Experimental Botany, 45(2), 155-163. [DOI:10.1016/S0098-8472(00)00090-3]
8. Ashraf, M. & Harris, P. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1), 3-16. [DOI:10.1016/j.plantsci.2003.10.024]
9. Ashraf, M. & Foolad, M.R. 2005. Pre sowing seed treatment - A shotgun approach to improve germination, plant growth, and crop yield under saline and non saline conditions. Advances in Agronomy, 88: 223- 265. [DOI:10.1016/S0065-2113(05)88006-X]
10. Asish Kumar Paridaa, A. & Anath Bandhu Das, A. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60: 324-349. [DOI:10.1016/j.ecoenv.2004.06.010]
11. Bagheri, A., Goldani, M. & Hasanzadeh, M. 1997. Agronomy and Breeding of lentil. Jihad, Mashhad University Press. 248 pp. (In Persian). Bajji, M., Lutts, S. & Kinet, J.M. 2001. Water deficit effects on solute contribution to osmotic
12. adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. Plant Science, 160: 669-681. [DOI:10.1016/S0168-9452(00)00443-X]
13. Baker, N.R and E. Rosenqvist, 2004. Applications of chlorophyll fluorescence Can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany, (55): 607-621. [DOI:10.1093/jxb/erh196]
14. Bornet, B., Goraguers, F. Joly, G. & Branchard, M. 2002. Genetic diversity in European and Argentinean cultivated potatoes detected by inter- simple sequence repeats (ISSR). Genome, 45: 481-484. [DOI:10.1139/g02-002]
15. Chung, J., H.L. Babka, G.L. Graef, P.E. Staswick, D.J. Lee, P.B. Cregan, R.C. Shoemaker and J.E. Specht, 2003. The seed protein, oil and yield QTL on soybean linkage group I. Crop Science, (43): 1053-1067. [DOI:10.2135/cropsci2003.1053]
16. Chen, J., Gituru, W. Wang Y. & Wang, Q. 2006. The extent of clonality and genetic diversity in the rare Caldesia grandis (Alismataceae): comparative results for RAPD and ISSR markers. Aquatic Botany, 27: 45-52. [DOI:10.1016/j.aquabot.2005.11.008]
17. Chinnusamy, V., Jagendorf, A. & Zhu, J.K. 2005. Understanding and improving salt tolerance in plants. Crop Science, 45: 437-448. [DOI:10.2135/cropsci2005.0437]
18. Cicek, N. & Cakirlar, H. 2002. The effect of salinity on some physiological parameters in two maize cultivars. Bulgican Journal Plant Physiology, 28: 66-74.
19. Cramre, G.R. 2002. Sodium calcium interactions under salinity stress. In Lauchli, A., Luttage, U. salinity: Environment Plants Molecules, 205-227. [DOI:10.1007/0-306-48155-3_10]
20. Dadashi Chovan, d., Abbasi, A. & Ahmadi Lak, A. 2021. Evaluation of tolerance to salinity in 43 lentil genotypes along with the cultivar of the people. Journal of Crop Plant Sciences of Iran. Volume 52, Number 3, pp. 67-87 (in persian).
21. Dastmalchi, T., Omidi, M. Torabi, S. Madah-Arefi, H. Etminan, A. Hasani M.H. & Behzadi-Rad, M. 2011. Evaluating genetic diversity in medicinal plant Althaea & Alcea spp L. with molecular marker of AFLP. Novin Genetics, 6: 79- 87.
22. Denduangboripant, J., Setaphan, S. Suwanprasart, W. & Panha, S. 2010. Determination of genetic diversity in local tobacco cultivars using ISSR molecular marker. Chiang Mai Journal of Science, 37(2): 293-303.
23. Fallah, A., Farahmandfar, E. & Moradi, F. 2015. Effect of salt stress on some morphological
24. characters of two rice cultivars during different growth stage at green house. Agronomy Journal (Pajoohesh va Sazandegi), 28: 175-182.
25. Farkhondeh, R., Nabizadeh, E. & Jalil Nezhad, N. 2012. Effect of salinity stress on proline content, membrane stability and water relation in two sugar beet cultivars. International Journal of Agricultural Science, 2: 385- 92.
26. Farooq, M., Jabran, K. Cheema, Z.A. Wahid, A. & Siddique, K.H. 2011. Therole of allelopathy in agricultural pest management. Pest management Science, 67 (5): 493-506. [DOI:10.1002/ps.2091]
27. Ghorbanli, M., Adib Hashemi, N. & Peyvandi, M. 2010. Study of salinity and ascorbic acid on some physiological responses of Nigella sativa L. Iranian Journal of Medical and Aromatic Plants. 26: 370- 380. (In Persian with English Summary).
28. Gupta, P. 2010. Elements of biotechnology: Rastogi Publications.
29. Gupta P.K. and R.K. Varshney, 2000. The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica. (113): 163-185. [DOI:10.1023/A:1003910819967]
30. Heydari sharif abad, H. 2001. Plant and Salinity. Publication of Forest and Rangeland Research Institute, Tehran, Iran, 199 p.
31. Hoorn, J.W., Katerji, N. Hamdy A. & Mastrorilli, M. 2001. Effect of salinity on yield and nitrogen uptake of four grain legumes and on biological nitrogen contribution from soil. Agricultural Water Management, 51: 887-898. [DOI:10.1016/S0378-3774(01)00114-7]
32. Hester, M.W., Mendelssohn, I.A. & McKee, K.L. 2001. Species and population variation to salinity stress in" Panicum hemitomon", "Spartina patens", and "Spartina alterniflora": morphological and physiological constraints. Environmental and Experimental Botany, 46(3): 277-297. [DOI:10.1016/S0098-8472(01)00100-9]
33. Joshi S.P., Gupta, V.S. Aggarwal, R.K. Ranjekar P.K. & Brar, D.S. 2000. Genetic diversity and phylogenetic relationship as revealed by inter-simple sequence repeat (ISSR) polymorphism in the genus Oryza. Theor Appl Genet, 100: 1311-1320. [DOI:10.1007/s001220051440]
34. Kalaji, M.H. & Guo, P. 2008. Chlorophyll fluorescence: a useful tool in barley plant breedingprograms. In: A. Sanchez and S.J. Gutierrez (Eds.). Photochemistry Research Progress. Nova Publishers, NY, USA: 439-463.
35. Kamkar, B., Kafi, M. & Nassiri Mahallati, M. 2004. Determination of the most sensitive developmental period of wheat (Triticum aestivum) to salt stress to optimize saline water utilization. 4th International Crop Science Congress. 1- 6.
36. Katerji, N., Hoorn, J.W. Hamdy, A. & Mastrorilli, M. 2003. Salinity effect on crop development and yield analysis of salt tolerance according to several classification metods. Agricultural Water Management, 62: 37-66. [DOI:10.1016/S0378-3774(03)00005-2]
37. Kaya, C., Higgs, D. Ince, F. Amador, B.M. Cakir, A. & Sakar, E. 2003. Ameliorative effects of potassium phosphate on salt stressed pepper and cucumber. Journal of Plant Nutrition. 26: 807-820. [DOI:10.1081/PLN-120018566]
38. Kayednezami, R. & Balochi, H. 2013. Physiological responses of lentil plant (Lens culinaris Medik.) to salinity stress and foliar spraying with salicylic acid. Journal of Iranian Legume Research. Volume 5. Number 2. Page 83-98.
39. Keshta, M.M., Hammad, K.M. & Sorour, W.A.I. 1999. Evaluation of rape seed genotypes in saline soil. Proceedings of the 10th International Rape Seed Congress. Canberra, Australia.
40. Kirkman, T. W. 1996, Statistics to Use http://www.physics.csbsju.edu/stats/ [Google Scholar]
41. Leung, J., Boouvier-Durand, M. Morris, P.C. Guerrier, D. Chedfor, F. & Giraudat, J. 1994. Arabidopsis ABA-response gene ABI1: features of a calcium- modulated protein phosphatase. Plant Science, 264: 1448-1452. [DOI:10.1126/science.7910981]
42. Maher, L., Armstrong, R. & Connor, D. 2003. Salt Tolerant lentils a Possibility for the future. Solutions for a better environment. Proceedings of the 11 th Australian Agronomy Conference, Geelong, Victoria, Australia, 2-6 February 2003, pp 0-4.
43. Mohammadi Azar, 1401. Evaluation of freezing stress tolerance in promising durum wheat lines and its relationship with molecular markers. PhD Thesis. Faculty of Agriculture and Natural Resources, Educational Department of Production Engineering and Plant Genetics, Mohaghegh Ardabil University. Ardabil (in persian).
44. Moraga, A., Trapero-Mozos, A. Gómez-Gómez, L. & Ahrazem, O. 2010. Intersimple sequence repeat markers for molecular characterization of Crocus cartwrightianus cv. albus. Ind. Crop Science. 123-132. [DOI:10.1016/j.indcrop.2010.04.012]
45. Masodi, B., Bihata, M.R. Babaei, H.R. & Peganbari, S.A. 2008. Evaluation of genetic diversity for agronomic, morphological and phonological traits in Sorbean. Seed and Plant Improvement Journal, 24(3): 413-427. (In Persian).
46. Mayra, R., Eduardo, V. Orlando, B. 2005. Plants Molecular aspects of abiotic stress. Bioteconologia Applicada, 22: 1-10.
47. Mohammadi Farsani, T., Etamadi, N. & Seyyed Tabatabai, B.A. 2017. Evaluation of genetic diversity of chicken grass plant (Cynodon docyulon) using morphological traits and ISSR molecular markers. Journal of Horticultural Sciences and Techniques of Iran. 83-996:2 (in persian).
48. Munns, R., James, R.A. & Läuchli, A. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57: 1025-1043. [DOI:10.1093/jxb/erj100]
49. Nabati, J., Guldani, M. Mohammadi, M. Mirmiran, S.M. & Asadi, A. 2021. Examining the response of lentil genotypes (Lens culinaris Medik.). to salt stress under controlled conditions. Journal of soil and plant relations. 12th year No. 4, pages 73-91. [DOI:10.47176/jspi.12.4.06955]
50. Naderi, H, Shokrpur, M. Asghari, A.S. Kanooni, H. & Esfandiari, A.S. 2015. Genetic diversity of pea lines using molecular markers ISSR. Iranian Field Crop Science, 45: 519-505.
51. Noori, K., Amiri, H. Naghdi Badi, H. Torabi, H. & Fotookian, M. 2012. Effects of soil and water salinity on flower yield, soluble components, minerals amount and essence quality of Matricaria recutita L. Journal of Water Research in Agriculture, 4: 367-378.
52. Paknejad, F., E. Majidiheravan, Q. Noor mohammadi, A. Siyadat and S. Vazan, 2007. Effects of drought stress on chlorophyll fluorescence parameters, chlorophyll content and grain yield of wheat cultivars. American Journal of Biochemistry and Biotechnology, 5(4): 162-169.
53. Parida, A. & Das, A.B. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60: 324-349. [DOI:10.1016/j.ecoenv.2004.06.010]
54. Reddy, P.M., Sarla, N. & Siddiq, E.A. 2000. Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica, 128:9-17. [DOI:10.1023/A:1020691618797]
55. Ritichie, S.W., Nguyen, H.T. & Holaday, A.S. 1990. Leaf water content and gas-exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30(1): 105-111. [DOI:10.2135/cropsci1990.0011183X003000010025x]
56. Sabaghpour, S., Safikhani, H. Sarker, M. Ghaffari, A. & Ketata, A.H. 2004. Present status andfuture propects of lentil cultivation in Iran. P, 146, Proceeding of 5th European Conference on Grain. 7-11 June, Dijon, France.
57. Saghai-Maroof, M.A., Soliman, K.M. Jorgensen, R.A. & Allard, R. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Procedings of the National Academy of Scinces, 81(24): 8014-8018. [DOI:10.1073/pnas.81.24.8014]
58. Saneoka, H., Moghaieb, R.E.A. Premachandra, G.S. & Fujita, K. 2004. Nitrogennutrition and water stress effects on cell membrane stability and leaf water realtions in Agrostis Palustries Huds. Envirmental and Exprimental Botany. 52: 131-138. [DOI:10.1016/j.envexpbot.2004.01.011]
59. Satoh, R., Nakashima, K. Seki, M. Shinozaki, K. & Yamaguchi-Shinozaki, K. 2002. ACTCAT, a novel cis-acting element for proline and hypo osmolarity- responsive expression of the ProDHgene encoding proline dehydrogenase in Arabidopsis. Plant Physiology, 130: 709-719. [DOI:10.1104/pp.009993]
60. Shah, Z., Shah, S.H. Peoples, M.B. Schwenke, G.D. & Herridge, D.F. 2003. Crop residue and fertilizer N effects on nitrogen fixation and yields of legume-cereal rotations and soil organic matter. Field Crop Research. 83, 1-11. [DOI:10.1016/S0378-4290(03)00005-4]
61. Shahriari Ahmadi, F.A., Salehi, M. Ghasemi, V.A.O. & Ramezani Moghadam, M.R. 2012. Genetic diversity between some genotypes of cotton (Gossypium sp.) In Iranian germplasm using molecular markers between Ryzmahvarh ISSR. Iranian Journal of Crop Research, 10: 680-674.
62. Sharma, K.K., Crouch, J.H. & Hosh, C.T. 2002. Application of biotechnology for crop improvement: prospects and constraints. Plant Science. 163: 381-395. [DOI:10.1016/S0168-9452(02)00133-4]
63. Singh S.P., & Diwivedi, V.K. 2002. Character association and path analysis in wheat (Triticum aestivum L.). Agriculture Science. Dig. 22: 225-547.
64. Soheili Movahed, S., M.A. Ismaili, F. Jabari, S. Khorramdel and A. Fooladi. 2016. The effect of water deficit on relative leaf water content, chlorophyll fluorescence indices and seed yield of four pinto bean cultivars. Agricultural plant production journal. Gorgan University of Agriculture and Natural Resources. 10 (1): 169-190. (in persian)
65. Soltani, A.S., Galeshi, E. Zeinali, H. & Latifi, N. 2002. Germination, seed reserve utilization and seedling growth of chickpea as affected by salinity and seed size. Seed Science Technology. 30: 661- 672.
66. Tavangar, A., Karami, L. Hedayat, M. & Abdi, G. 2021. Effect of salinity and drought stress on morphological and biochemical properties of two Iranian fenugreeks (Trigonella foenum-graecum) populations. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(2): 1-12. [DOI:10.15835/nbha49212038]
67. Thavarajah, D. & Thavarajah, P. 2011. Lentil (Lens culinaris) as a biofortified crop with essential micronutrients: A food - based solution to micronutrient malnutrition. Grain legumes. 57: 29-31.
68. Wakui, K., Iwata, H. Takahashi, Y. & Fujigaki, J. 2009. Assessment of the congruity of genetic relationships and variation revealed by individual-and bulkedsamples- based approaches using RAPD and ISSR markers in Japanese turnip (Brassica rapa ssp. Rapa) cultivars. Breed Science, 59: 447-452. [DOI:10.1270/jsbbs.59.447]
69. Wang, Z., Wang, J. Bao, Y. Wu, Y. & Zhang, H. 2011. Quantitative trait loci controlling rice seed germination under salt stress. Euphytica, 178: 297-307. [DOI:10.1007/s10681-010-0287-8]
70. Wisal, M. 2003. Strategies for improving wheat productivity and soil organic matter in irrigated and rainfed environments. PhD thesis, North West Frontier Province (NWFP) Agricultural University, Peshawar, Pakistan. Available at: http://eprints.hec.gov.pk/536 (accessed on 15 April 2008).
71. Wu, C.J., Cheng, Z.Q. Huang, X.Q. Yin, S.H, Cao, K.M. & Sun, C.R. 2004. Genetic diversity among and within population of Oryza granulata from Younnan of China revealed by RAPD and ISSR markers. Implications for the endangered species. Plant Science. 167: 35-42. [DOI:10.1016/j.plantsci.2004.02.022]
72. Xiao, B.G. & Yang, B.C. 2007. Assessment of genetic diversity among tobacco germplasms by ISSR markers. Scientia Agricultural Sinica. 40(10): 2153-2161.
73. Yang, Y.X., Wu, W. Zheng, Y.L. Chen, L. Liu, R.J. & Huang, C.Y. 2007. Genetic diversity and relationships among safflower (Carthamus tinctorious L.) analyzed by inter-simple sequence repeats (ISSRs). Genetice Resource Crop Evolution. 54: 1043-1051. [DOI:10.1007/s10722-006-9192-3]
74. Yordanov, V. & Tsoev, T. 2000. Plant responses to droght, acclimation and stress tolerance. Photosynthica. 38 (1): 171-186. [DOI:10.1023/A:1007201411474]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




کلیه حقوق این وب سایت متعلق به یافته های نوین در علوم زیستی است.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2015 All Rights Reserved | Nova Biologica Reperta

Designed & Developed by : Yektaweb