Volume 8, Issue 4 (2-2022)                   Human Information Interaction 2022, 8(4): 15-28 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abolghasemi M, Fahimnia F. Machine Learning and Citizen Science: Opportunities and Challenges of Human-Computer Interaction. Human Information Interaction 2022; 8 (4)
URL: http://hii.khu.ac.ir/article-1-2987-en.html
University of Tehran
Abstract:   (1848 Views)
Background and Aim: In processing large data, scientists have to perform the tedious task of analyzing hefty bulk of data. Machine learning techniques are a potential solution to this problem. In citizen science, human and artificial intelligence may be unified to facilitate this effort. Considering the ambiguities in machine performance and management of user-generated data, this paper aims to explain how machine learning can be combined with the active citizenship concept. In addition, it discusses the necessary conditions for advancing the citizen science and beyond.
Method: The review method and comprehensive systematic study was applied to assess the concept of machine learning, citizen science and human-computer interaction.
Results: Many research problems seem to be computationally insolvable and may demand human cognitive skills. Therefore, due to classification activities which are performed in the majority of large-scale citizenship science projects, in addition to participants who may learn lessons about the science, machines also learn lessons about human and imitate him and slowly its learning capacity enhances over time. Artificial intelligence, particularly machine learning is a debatable topic with related ambiguities and biases which should strongly take into consideration.
Conclusion: The application of machine learning techniques carries many advantages including classification time cut and masterful evaluations in the process of making decisions on big data sets. However, algorithms usually act as a black box where data biases are not observable at first glance. Taking this problem into consideration may mitigate serious risks arising from the application of such techniques.
Full-Text [PDF 611 kb]   (524 Downloads)    
Type of Study: Research | Subject: General

References
1. Ahumada, J. A., Fegraus, E., Birch, T., Fores, N., Kays, R., O'Brien, T. G., et al. (2020). Wildlife insights: A platform to maximize the potential of camera trap and other passive sensor wildlife data for the planet. Environmental Conservation, 47(1), 1-6. [DOI:10.1017/S0376892919000298]
2. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., et al. (2019). Quantum su-premacy using a programmable superconducting processor. Nature, 574(7779), 505-510. [DOI:10.1038/s41586-019-1666-5] [PMID]
3. Bird, T. J., Bates, A. E., Lefcheck, J. S., Hill, N. A., Thomson, R. J., Edgar, G. J., et al. (2014). Statis-tical solutions for error and bias in global citizen science datasets. Biological Conservation, 173, 144-154. [DOI:10.1016/j.biocon.2013.07.037]
4. Blackwell, A. (2015). Interacting with an inferred world: The challenge of machine learning for hu-mane computer interaction. Aarhus Series on Human Centered Computing, 1(1), 12. [DOI:10.7146/aahcc.v1i1.21197]
5. Bonney, R., Ballard, H., Jordan, R., McCallie, E., Phillips, T., Shirk, J., & Wilderman, C. C. (2009). Public participation in scientific research: Defining the field and assessing its potential for informal science education. A CAISE inquiry group report. Washington, DC: Center for Advancement of Informal Science Education (CAISE).
6. Burrell, J. (2016). How the machine 'thinks': Un-derstanding opacity in machine learning algo-rithms. Big Data & Society, 3(1). [DOI:10.1177/2053951715622512]
7. Ceccaroni, L., Bibby, J., Roger, E., Flemons, P., Michael, K., Fagan, L., & Oliver, J. L. (2019). Opportunities and risks for citizen science in the age of artificial intelligence. Citizen Science: Theory and Practice, 4(1), 29. [DOI:10.5334/cstp.241]
8. Chen, D., & Gomes, C.P. (2018). Bias reduction via end-to-end shift learning: Application to citizen science. [DOI:10.1609/aaai.v33i01.3301493]
9. Dellermann, D., Calma, A., Lipusch, N., Weber, T., Weigel, S., & Ebel, P. (2019). The future of hu-man-AI collaboration: A taxonomy of design knowledge for hybrid intelligence systems. In T. Bui (Ed.), Proceedings of the Hawaii International Conference on System Sciences (HICSS) (pp. 1-10). ScholarSpace/AIS Electronic Library (AISeL). [DOI:10.24251/HICSS.2019.034]
10. Doshi-Velez, F., & Kim, B. (2017). Towards a rig-orous science of interpretable machine learning.
11. Edwards, L., & Veale, M. (2018). Enslaving the algorithm: From a 'right to an explanation' to a 'right to better decisions'? IEEE Security and Pri-vacy, 16(3), 46-54. [DOI:10.1109/MSP.2018.2701152]
12. Floridi, L., & Cowls, J. (2019). A unified framework of five principles for AI in society. Harvard Data Science Review, 1, 1. [DOI:10.1162/99608f92.8cd550d1]
13. Fortson, L., Masters, K., Nichol, R., Borne, K., Edmondson, E., Lintott, C., et al. (2012). Galaxy Zoo: Morphological classification and citizen sci-ence. [DOI:10.1201/b11822-16]
14. Franzen, M. (2019). Changing science-society rela-tions in the digital age: The citizen science movement and its broader implications. In D. Si-mon, S. Kuhlmann, J. Stamm, & W. Canzler (Eds.), Handbook on science and public policy (pp. 336-356). Cheltenham: Edward Elgar. [DOI:10.4337/9781784715946.00028]
15. Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., & Kagal, L. (2019). Explaining ex-planations: An overview of interpretability of ma-chine learning. In Proceedings - 2018 IEEE 5th international conference on data science and ad-vanced analytics - DSAA 2018 (pp. 80-89).. [DOI:10.1109/DSAA.2018.00018]
16. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box models. ACM Computing Surveys, 51(5), Article 93, 1-42. [DOI:10.1145/3236009]
17. Haklay, M. (2013). Citizen science and volunteered geographic information: Overview and typology of participation. In D. Z. Sui, S. Elwood, & M. Goodchild (Eds.), Crowdsourcing geographic knowledge (pp. 105-122). Dordrecht: Springer. [DOI:10.1007/978-94-007-4587-2_7]
18. Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389-399. [DOI:10.1038/s42256-019-0088-2]
19. Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260. [DOI:10.1126/science.aaa8415] [PMID]
20. Lehejcek, J., Adam, M., Tomasek, P., & Trojan, J. (2019). Informacni system pro spravu fotopasti [National database of photo trap records].
21. Lintott, C., & Reed, J. (2013). Human computation in citizen science. In P. Michelucci (Ed.), Hand-book of human computation (pp. 153-162). New York: Springer. [DOI:10.1007/978-1-4614-8806-4_14]
22. Lukyanenko, R., Wiggins, A., & Rosser, H. K. (2019). Citizen science: An information quality research frontier. Information Systems Frontiers. [DOI:10.1007/s10796-019-09915-z]
23. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2019). A survey on bias and fairness in machine learning.
24. Michael, M., & Lupton, D. (2015). Toward a mani-festo for the 'public understanding of big data'. Public Understanding of Science, 25, 104-116. [DOI:10.1177/0963662515609005] [PMID]
25. Neal, L. (2013). The 'human sensor'. Bridging between human data and services. In P. Michelucci (Ed.), Handbook of human computa-tion (pp. 581-593). New York: Springer. [DOI:10.1007/978-1-4614-8806-4_45]
26. Poncela-Casasnovas, J., Gutiérrez-Roig, M., Gracia-Lázaro, C., Vicens, J., Gómez-Gardeñes, J., Perelló, J., et al. (2016). Humans display a re-duced set of consistent behavioral phenotypes in dyadic games. Science Advances, 2(8), 1-9. [DOI:10.1126/sciadv.1600451] [PMID] []
27. Popenici, S., & Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(22). [DOI:10.1186/s41039-017-0062-8] [PMID] []
28. Rudin, C. (2019). Stop explaining black box ma-chine learning models for high stakes decisions and use interpretable models instead. Nature Ma-chine Intelligence, 1(5), 206-215. [DOI:10.1038/s42256-019-0048-x] [PMID] []
29. Sathya, R., & Abraham, A. (2013). Comparison of supervised and unsupervised learning algorithms for pattern classification. International Journal of Advanced Research in Artificial Intelligence, 2(2), 34-38. [DOI:10.14569/IJARAI.2013.020206]
30. Sullivan, D. P., Winsnes, C. F., Åkesson, L., Hjelmare, M., Wiking, M., Schutten, R., et al. (2018). Deep learning is combined with massive-scale citizen science to improve large-scale image classification. Nature Biotechnology, 36(9), 820-832. [DOI:10.1038/nbt.4225] [PMID]
31. Swanson, A., Kosmala, M., Lintott, C., & Packer, C. (2016). A generalized approach for producing, quantifying, and validating citizen science data from wildlife images. Conservation Biology, 30 (3), 520-531. [DOI:10.1111/cobi.12695] [PMID] []
32. Torney, C. J., Lloyd-Jones, D. J., Chevallier, M., Moyer, D. C., Maliti, H. T., Mwita, M., et al. (2019). A comparison of deep learning and citizen science techniques for counting wildlife in aerial survey images. Methods in Ecology and Evolu-tion, 10(6), 779-787. [DOI:10.1111/2041-210X.13165]
33. Trojan, J., Schade, S., Lemmens, R., & Frantál, B. (2019). Citizen science as a new approach in ge-ography and beyond: Review and reflections. Moravian Geographical Reports, 27(4), 254-264. [DOI:10.2478/mgr-2019-0020]
34. Vicens, J., Bueno-Guerra, N., Gutiérrez-Roig, M., Gracia-Lázaro, C., Gómez-Gardeñes, J., Perelló, J., et al. (2018). Resource heterogeneity leads to unjust effort distribution in climate change miti-gation. PLoS One, 13(10), 1-17. [DOI:10.1371/journal.pone.0204369] [PMID] []
35. Walmsley, M., Smith, L., Lintott, C., Gal, Y., Bam-ford, S., Dickinson, H., et al. (2019). Galaxy Zoo: Probabilistic morphology through Bayesian CNNs and active learning. Monthly Notices of the Royal Astronomical Society, 491(2), 1554-1574. [DOI:10.1093/mnras/stz2816]
36. Watson, D., & Floridi, L. (2018). Crowdsourced science: Sociotechnical epistemology in the e-research paradigm. Synthese, 195, 741-764. [DOI:10.1007/s11229-016-1238-2]
37. Willi, M., Pitman, R. T., Cardoso, A. W., Locke, C., Swanson, A., Boyer, A., et al. (2019). Identifying animal species in camera trap images using deep learning and citizen science. Methods in Ecology and Evolution, 10(1), 80-91. [DOI:10.1111/2041-210X.13099]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Human Information Interaction

Designed & Developed by : Yektaweb