Volume 3, Issue 8 (6-2012)                   jemr 2012, 3(8): 119-140 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Naderi E, Abbasi-Nejad H. Chaos Analysis, Wavelet Decomposition and the Performance of Neural Network Models in Forecasting Tehran Stock Exchange Index. jemr 2012; 3 (8) :119-140
URL: http://jemr.khu.ac.ir/article-1-508-en.html
1- Tehran University , naderi.ec@ut.ac.ir
2- Tehran University
Abstract:   (13762 Views)

This study investigates predictability, chaos analysis, wavelet decomposition and the performance of neural network models in forecasting the return series of the Tehran Stock Exchange Index (TEDPIX). For this purpose, the daily data from April 24, 2009 to May 3, 2012 is used. Results show that TEDPIX series is chaotic and predictable with nonlinear effect. Also, according to obtained inverse of the largest lyapunov exponent, we are able to predict the future values of the series up to 31 days. Besides, our findings suggest that multi-layer feed forward neural network model and fuzzy model based on decomposed data, are of superior performances in predicting the return series. It is worth mentioning that, among these models, MFNN reveals the best performance.

Full-Text [PDF 704 kb]   (5637 Downloads)    
Type of Study: Applicable | Subject: پولی و مالی
Received: 2012/07/14 | Accepted: 2012/11/12 | Published: 2012/09/15

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Economic Modeling Research

Designed & Developed by : Yektaweb