Volume 5, Issue 4 (3-2019)                   NBR 2019, 5(4): 411-419 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sheikhbahaei M, Rezanejad F, Sasan H. Sequencing and phylogenetic study of APETALA1 homologous gene in garden cress (Lepidium sativum L.). NBR 2019; 5 (4) :411-419
URL: http://nbr.khu.ac.ir/article-1-2637-en.html
Shahid Bahonar University of Kerman , mh.sheikhbahaei@gmail.com
Abstract:   (4484 Views)

The flowering process in plants proceeds through the induction of an inflorescence meristem triggered by several pathways. Many of the genes associated with these pathways encode transcription factors of the MADS domain family. The MADS-domain transcription factor APETALA1 (AP1) is a key regulator of flower development. The first step to understand the molecular mechanisms under the function of each gene in a plant is identification, sequencing and phylogeny analysis of that gene. For this purpose, total RNA was isolated from flower bud of garden cress (Lepidium sativum L.) and was used for cDNA synthesis. The specific primers were designed based on nucleotide sequence alignment of AP1 homologus genes from plants of the same family Brassicaceae and were used in RT-PCR. After observing its electrophoretic pattern and ensuring the quality of PCR product, the amplicon was sent for sequencing. After receiving the results of sequencing, the sequence examined with BLAST, MUSCLE, Gene Runner and MEGA6 softwares. The results indicated amplification of 787 nucleotides fragment that named LsAP1 and was recorded by accession number KP070728 in NCBI database. The studies show high similarity and overlapping of gene bank sequences with LsAP1 illative protein. According to these results, LsAP1 may play a similar role as AP1 in flower induction and could act as a flower meristem identity gene in Lepidium sativum L.

Full-Text [PDF 923 kb]   (1163 Downloads)    
Type of Study: Original Article | Subject: Cell and Molecular Biology
Received: 2016/09/19 | Revised: 2019/04/6 | Accepted: 2019/01/5 | Published: 2019/03/18 | ePublished: 2019/03/18

References
1. Aikawa, S., Kobayashi, M.J., Satake, A., Shimizu, K.K. and Kudoh, H.J. 2010. Robust control of the seasonal expression of the Arabidopsis FLC gene in a fluctuating environment. ‒ Proc. Natl. Acad. Sci. 107: 11632-11637. [DOI:10.1073/pnas.0914293107]
2. Burko, Y., Shleizer-Burko S., Yanai, O., Shwartz, I., Zelnik, I.D., Jacob-Hirsch, J., Kela, I., Eshed-Williams, L. and Ori, N. 2013. A role for APETALA1/FRUITFULL transcription factors in tomato leaf development. ‒ Pl. Cell. 25: 2070-2083. [DOI:10.1105/tpc.113.113035]
3. Dieffenbach, C., Lowe, T. and Dveksler, G. 1993. General concepts for PCR primer design. ‒ PCR Methods Appl. 3: S30-S37. [DOI:10.1101/gr.3.3.S30]
4. Favaro, R., Pinyopich, A., Battaglia, R., Kooiker, M., Borghi, L., Ditta, G., Yanofsky, M., Kater, M., and Colombo, L. 2003. MADS-box protein complexes control carpel and ovule development in Arabidopsis. ‒ Pl. Cell. 15: 2603-2611. [DOI:10.1105/tpc.015123]
5. Grandi, V., Gregis, V. and Kater, M.M. 2012. Uncovering genetic and molecular interactions among floral meristem identity genes in Arabidopsis thaliana. ‒ Plant J. 69: 881-893. [DOI:10.1111/j.1365-313X.2011.04840.x]
6. Guo, H., Yang, H., Mockler, T.C. and Lin, C. 1998. Regulation of flowering time by Arabidopsis photoreceptors. ‒ Science. 279: 1360-1363. [DOI:10.1126/science.279.5355.1360]
7. Honma, T. and Goto, K. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. ‒ Nature 409: 525-529. [DOI:10.1038/35054083]
8. Irish, V.F. and Sussex, I.M. 1990. Function of the apetala-1 gene during Arabidopsis floral development. ‒ Pl. Cell. 2: 741-753. [DOI:10.1105/tpc.2.8.741]
9. Jack, T. 2004. Molecular and genetic mechanisms of floral control. ‒ Pl. Cell. 16: S1-S17. [DOI:10.1105/tpc.017038]
10. Jack, T., Brockman, L.L. and Meyerowitz, E.M. 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. ‒ Cell 68: 683-697. [DOI:10.1016/0092-8674(92)90144-2]
11. Kasabe, P.J., Patil, P.N., Kamble, D.D. and Dandge, P.B. 2012. Nutritional, elemental analysis and antioxidant activity of garden cress (Lepidium sativum L.) seeds. ‒ Int. J. Pharm. Pharm. Sci. 4: 392-395.
12. Kong, D., Shen, X., Guo, B., Dong, J., Li, Y. and Liu, Y. 2015. Cloning and expression of an APETALA1-like gene from Nelumbo nucifera. ‒ Genet. Molec. Res. 14: 6819. [DOI:10.4238/2015.June.18.24]
13. Liljegren, S.J., Gustafson-Brown, C., Pinyopich, A., Ditta, G.S. and Yanofsky, M.F. 1999. Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. ‒ Pl. Cell. 11: 1007-1018. [DOI:10.1105/tpc.11.6.1007]
14. Liu, C., Xi, W., Shen, L., Tan, C. and Yu, H. 2009. Regulation of floral patterning by flowering time genes. ‒ Dev. Cell. 16: 711-722. [DOI:10.1016/j.devcel.2009.03.011]
15. Lü, J., Wu, Y., Sun, L. and Zhang, Q. 2007. Genetic transformation of Chrysanthemum morifolium cv.'Yu Ren Mian'with AP1 gene mediated by Agrobacterium tumefaciens. ‒ Sci. Silvae Sin. 43: 128-132.
16. Mandel, M.A., Gustafson-Brown, C., Savidge, B. and Yanofsky, M.F.J.N. 1992 Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. ‒ Nature 360: 273-277. [DOI:10.1038/360273a0]
17. Mandel, M.A., and Yanofsky, M.F. 1995. A gene triggering flower formation in Arabidopsis. ‒ Nature 377: 522-524. [DOI:10.1038/377522a0]
18. Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C.J., Lu, S., Chitsaz, F., Derbyshire, M.K., Geer, R.C. and N.R. Gonzales. 2016. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. ‒ Nucl. Acids Res. 45: D200-D203. [DOI:10.1093/nar/gkw1129]
19. Melzer, R., Wang, Y. and Theißen, G. 2010. The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower. ‒ Semin. Cell Dev. Biol. 21: 118-128. [DOI:10.1016/j.semcdb.2009.11.015]
20. Menzel, G., Apel, K. and Melzer, S. 1995. Isolation and analysis of SaMADS C, the APETALA 1 cDNA homolog from mustard. ‒ Pl. Physiol. 108: 853. [DOI:10.1104/pp.108.2.853]
21. Mibus, H., Heckl, D. and Serek, M. 2011. Cloning and characterization of three APETALA1/FRUITFULL-like genes in different flower types of Rosa× hybrida L. ‒ J. Pl. Growth Regulat. 30: 272-285. [DOI:10.1007/s00344-010-9190-8]
22. Ng, M. and Yanofsky, M.F. 2001. Activation of the Arabidopsis B class homeotic genes by APETALA1. ‒ Pl. Cell. 13: 739-753. [DOI:10.1105/tpc.13.4.739]
23. Ó'Maoiléidigh, D.S., Graciet, E. and Wellmer, F. 2014. Gene networks controlling Arabidopsis thaliana flower development. ‒ New Phytol. 201: 16-30. [DOI:10.1111/nph.12444]
24. Pabón-Mora, N., Ambrose, B.A. and Litt, A. 2012. Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development. ‒ Pl. Physiol. 158: 1685-1704. [DOI:10.1104/pp.111.192104]
25. Pelaz, S., Gustafson‐Brown, C., Kohalmi, S.E., Crosby, W.L. and Yanofsky, M.F. 2001. APETALA1 and SEPALLATA3 interact to promote flower development. ‒ Plant J. 26: 385-394. [DOI:10.1046/j.1365-313X.2001.2641042.x]
26. Pe-a, L., Martín-Trillo, M., Juárez, J., Pina, J.A., Navarro, L. and Martínez-Zapater, J.M. 2001. Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. ‒ Nat. Biotechnol. 19: 263-267. [DOI:10.1038/85719]
27. Riechmann, J.L., Krizek, B.A. and Meyerowitz, E.M. 1996. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. ‒ Proc. Natl. Acad. Sci. 93: 4793-4798. [DOI:10.1073/pnas.93.10.4793]
28. Sambrook, J., Russell, D.W. and Russell, D.W. 2001. Molecular cloning: a laboratory manual (3-volume set). ‒ Cold spring harbor laboratory press, New York, 2: 300
29. Sessions, A., Yanofsky, M.F. and Weigel, D. 2000. Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1. ‒ Science 289: 779-781. [DOI:10.1126/science.289.5480.779]
30. Shore, P. and Sharrocks, A.D. 1995. The MADS‐box family of transcription factors. ‒ Eur. J. Biochem. 229: 1-13. [DOI:10.1111/j.1432-1033.1995.tb20430.x]
31. Shukla, A., Singh, C.S. and Bigoniya, P. 2011. Phytochemical and CNS activity of Lepidium sativum Linn seeds total alkaloid. ‒ Der Pharmacia Lett. 3: 226-237.
32. Suárez-López, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F. and Coupland, G. 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. ‒ Nature. 410: 1116-1120. [DOI:10.1038/35074138]
33. Tang, M., Tao, Y.B. and Xu, Z.F. 2016. Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha. ‒ Peer J. 4: e1969. [DOI:10.7717/peerj.1969]
34. Theissen, G. and Saedler, H. 2001. Plant biology: floral quartets. ‒ Nature. 409: 469-471. [DOI:10.1038/35054172]
35. Theologis, A., Ecker, J.R., Palm, C.J., Federspiel, N.A., Kaul, S., White, O., Alonso, J., Altafi, H., Araujo, R. and Bowman, C.L. 2000. Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. ‒ Nature 408: 816-820. [DOI:10.1038/35048500]
36. Wellmer, F. and Riechmann, J.L. 2010. Gene networks controlling the initiation of flower development. ‒ Trends Genet. 26: 519-527. [DOI:10.1016/j.tig.2010.09.001]
37. Xu, Z., Ali, Z., Yi, J., He, X., Zhang, D., Yu, G., Khan, A., Khan, I. and Ma, H. 2011. Expressed sequence tag-simple sequence repeat-based molecular variance in two Salicornia (Amaranthaceae) populations. ‒ Genet. Molec. Res. 10: 1262-1276. [DOI:10.4238/vol10-2gmr1321]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb